Previous |  Up |  Next

Article

Title: Global statistical information in exponential experiments and selection of exponential models (English)
Author: Vajda, Igor
Author: van der Meulen, E.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 1
Year: 1998
Pages: 23-51
Summary lang: English
.
Category: math
.
Summary: The concept of global statistical information in the classical statistical experiment with independent exponentially distributed samples is investigated. Explicit formulas are evaluated for common exponential families. It is shown that the generalized likelihood ratio test procedure of model selection can be replaced by a generalized information procedure. Simulations in a classical regression model are used to compare this procedure with that based on the Akaike criterion. (English)
Keyword: exponential families
Keyword: information divergence
Keyword: Fisher information
Keyword: global information
Keyword: Akaike criterion
Keyword: model selection
MSC: 62B10
MSC: 62B15
MSC: 62F05
idZBL: Zbl 0937.62006
idMR: MR1488284
DOI: 10.1023/A:1022244007831
.
Date available: 2009-09-22T17:56:33Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134373
.
Reference: [1] Akaike, H.: Information theory and an extension of the maximum likelihood principle.Proceedings of the Second International Symposium on Information Theory, B. N. Petrov et al. (eds.), Akademiai Kiado, Budapest, 1973, pp. 267–281. Zbl 0283.62006, MR 0483125
Reference: [2] Bauer, P., Pötscher B. M. and Hackl P.: Model selection by multiple test procedures.Statistics 19 (1988), 39–44. MR 0921623, 10.1080/02331888808802068
Reference: [3] Berlinet, A. and Francq, Ch.: Identification of a univariate ARMA model.Comp. Statist. 9 (1994), 117–133. MR 1280755
Reference: [4] Brown, L. D.: Fundamentals of Statistical Exponential Families.Inst. of Mathem. Statist, Hayword, California, 1986. Zbl 0685.62002, MR 0882001
Reference: [5] Chernoff, H.: On the distribution of likelihood ratio.Ann. Math. Statist. 25 (1954), 573–578. MR 0065087, 10.1214/aoms/1177728725
Reference: [6] Kullback, S.: Information Theory and Statistics.Wiley, New York, 1959. Zbl 0088.10406, MR 0103557
Reference: [7] Lehmann, E. L.: Testing Statistical Hypotheses.2nd edition, Wiley, New York, 1986. Zbl 0608.62020, MR 0852406
Reference: [8] Liese, F. and Vajda, J.: Convex Statistical Distances.Teubner, Leipzing, 1987. MR 0926905
Reference: [9] Nikolov, V.: Regression and Autoregression Models of Signals and their Recognition by Neural Nets.Diploma Theses. Faculty of Physical and Nuclear Engineering, Czech Tech. University, Prague, 1996. (Czech)
Reference: [10] Nishii, R.: Maximum likelihood principle and model selection when the true model is unspecified.Journal of Multivariate Analysis 27 (1988), 392–403. Zbl 0684.62026, MR 0970962, 10.1016/0047-259X(88)90137-6
Reference: [11] Pötscher, B. M.: Order estimation in Arma–models by Lagrangian multiplier test.Ann. Statist. 11 (1983), 872–885. MR 0707937, 10.1214/aos/1176346253
Reference: [12] Rissanen, J.: Modelling by shortest data description.Automatica 14 (1978), 465–471. 10.1016/0005-1098(78)90005-5
Reference: [13] Rockefellar, R. T.: Convex Analysis.Princeton University Press, Princeton, 1970.
Reference: [14] Ronchetti, E.: Robust model selection.In Transactions of the Twelfth Prague Conference on Information Theory, ..., J. Á. Víšek, and P. Lachout (eds.), Academy of Sciences of the Czech Republic, Prague, 1994, pp. 200–202.
Reference: [15] Rydén, T.: Estimating the order of hidden Markov models.Statistics 26 (1995), 345–354. MR 1365683, 10.1080/02331889508802501
Reference: [16] Sahamoto, Y., Ishiguro, M. and Kitagawa, G.: Akaike Information Criterion Statistics.Reidel, Dordrecht, 1986.
Reference: [17] Schwartz, G.: Estimating the dimension of a model.Annals of Statistics 6 (1978), 461–464. MR 0468014, 10.1214/aos/1176344136
Reference: [18] Spanier, J. and Oldham, K. B.: An Atlas of Functions.Springer, Berlin, 1987.
Reference: [19] Speed, T. P. and Yu, B.: Model collection and prediction: Normal regression.Ann. Inst. Statist. Math. 45 (1993), 35–54. MR 1220289, 10.1007/BF00773667
Reference: [20] Vajda, I.: Global statistical information, likelihood ratio tests and maximum likelihood estimators.Kybernetika (submitted) (1997).
Reference: [21] Vieu, P.: Order choice of nonlinear autoregressive models.Statistics 26 (1995), 307–328. MR 1365681, 10.1080/02331889508802499
.

Files

Files Size Format View
AplMat_43-1998-1_3.pdf 492.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo