Previous |  Up |  Next

Article

Title: A numerical solution of the Dirichlet problem on some special doubly connected regions (English)
Author: Dont, Miroslav
Author: Dontová, Eva
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 1
Year: 1998
Pages: 53-76
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to give a convergence proof of a numerical method for the Dirichlet problem on doubly connected plane regions using the method of reflection across the exterior boundary curve (which is analytic) combined with integral equations extended over the interior boundary curve (which may be irregular with infinitely many angular points). (English)
Keyword: Dirichlet problem
Keyword: integral equations
Keyword: numerical method
MSC: 31A20
MSC: 31A25
MSC: 45B05
MSC: 65N99
MSC: 65R20
idZBL: Zbl 0938.65153
idMR: MR1488285
DOI: 10.1023/A:1022296024669
.
Date available: 2009-09-22T17:56:39Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134374
.
Reference: [1] Ju. D. Burago, V. G. Maz’ja: Some problems of potential theory and theory of functions for domains with nonregular boundaries.Zapisky Naučnych Seminarov LOMI 3 (1967). (Russian)
Reference: [2] M. Dont: Fourier problem with bounded Baire data.Math. Bohemica 122 (1997), 405–441. Zbl 0898.31004, MR 1489402
Reference: [3] E. Dontová: Reflection and the Dirichlet and Neumann problems.Thesis, Prague, 1990. (Czech)
Reference: [4] E. Dontová: Reflection and the Dirichlet problem on doubly connected regions.Časopis pro pěst. mat. 113 (1988), 122–147. MR 0949040
Reference: [5] E. Dontová: Reflection and the Neumann problem in doubly connected regions.Časopis pro pěst. mat. 113 (1988), 148–168. MR 0949041
Reference: [6] Král J.: Some inequalities concerning the cyclic and radial variations of a plane path-curve.Czechoslovak Math. J. 14 (89)  (1964), 271–280. MR 0180689
Reference: [7] Král J.: On the logarithmic potential of the double distribution.Czechoslovak Math. J. 14 (89)  (1964), 306–321. MR 0180690
Reference: [8] Král J.: Non-tangential limits of the logarithmic potential.Czechoslovak Math. J. 14 (89)  (1964), 455–482. MR 0180691
Reference: [9] J. Král: The Fredholm radius of an operator in potential theory.Czechoslovak Math. J. 15 (1965), 454–473, 565–588. MR 0190363
Reference: [10] J. Král: Integral Operators in Potential Theory.Lecture Notes in Math. vol. 823, Springer-Verlag 1980. MR 0590244
Reference: [11] J. Král: Boundary regularity and normal derivatives of logarithmic potentials.Proc. of the Royal Soc. of Edinburgh 106A (1987), 241–258. MR 0906210
Reference: [12] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580
Reference: [13] J. Král: Potential Theory I.State Pedagogic Publishing House, Praha 1965 (in Czech).
Reference: [14] J. Král, I. Netuka, J. Veselý: Potential Theory II.State Pedagogic Publishing House, Praha 1972 (in Czech).
Reference: [15] V. G. Maz’ja: Boundary Integral Equations, Analysis IV, Encyclopaedia of Mathematical Sciences vol. 27.Springer-Verlag, 1991.
Reference: [16] I. Netuka: Double layer potentials and the Dirichlet problem.Czech. Math. J. 24 (1974), 59–73. Zbl 0308.31008, MR 0348127
Reference: [17] I. Netuka: Generalized Robin problem in potential theory.Czech. Math. J. 22 (1972), 312–324. Zbl 0241.31008, MR 0294673
Reference: [18] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czech. Math. J. 22 (1972), 462–489. Zbl 0241.31009, MR 0316733
Reference: [19] I. Netuka: The third boundary value problem in potential theory.Czech. Math. J. 22 (1972), 554–580. Zbl 0242.31007, MR 0313528
Reference: [20] J. M. Sloss: Global reflection for a class of simple closed curves.Pacific J. Math. 52 (1974), 247–260. Zbl 0243.30004, MR 0379807, 10.2140/pjm.1974.52.247
Reference: [21] J. M. Sloss: The plane Dirichlet problem for certain multiply connected regions.J. Analyse Math. 28 (1975), 86–100. Zbl 0325.31004, 10.1007/BF02786808
Reference: [22] J. M. Sloss: A new integral equation for certain plane Dirichlet problems.SIAM J. Math. Anal. 6 (1975), 998–1006. Zbl 0323.35025, MR 0437784, 10.1137/0506088
Reference: [23] J. M. Sloss, J. C. Bruch: Harmonic approximation with Dirichlet data on doubly connected regions.SIAM J. Numer. Anal. 14 (1977), 994–1005. MR 0478687, 10.1137/0714067
Reference: [24] F. Stummel: Diskrete Konvergenz linearen Operatoren I and II.Math. Zeitschr. 120 (1971), 231–264. MR 0291871, 10.1007/BF01117498
Reference: [25] W. L. Wendland: Boundary element methods and their asymptotic convergence.Lecture Notes of the CISM Summer-School on “Theoretical acoustic and numerical techniques”, Int. Centre Mech. Sci., Udine (Italy), P. Filippi (ed.), Springer-Verlag, Wien, New York, 1983, pp. 137–216. Zbl 0618.65109, MR 0762829
.

Files

Files Size Format View
AplMat_43-1998-1_4.pdf 408.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo