| Title:
             | 
Locally most powerful rank tests for testing randomness and symmetry (English) | 
| Author:
             | 
Ho, Nguyen Van | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
43 | 
| Issue:
             | 
2 | 
| Year:
             | 
1998 | 
| Pages:
             | 
93-102 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $X_i$, $1\le i \le N$, be $N$ independent random variables (i.r.v.) with distribution functions (d.f.) $F_i (x,\Theta )$, $1\le i \le N$, respectively, where $\Theta $ is a real parameter. Assume furthermore that $F_i(\cdot ,0)=F(\cdot )$ for $1\le i \le N$. Let $R=(R_1,\ldots ,R_N)$ and $R^+=(R_1^+,\ldots ,R_N^+)$ be the rank vectors of $X = (X_1,\ldots ,X_N)$ and $|X| = (|X_1|,\ldots ,|X_N|)$, respectively, and let $V = (V_1,\ldots ,V_N)$ be the sign vector of $X$. The locally most powerful rank tests (LMPRT) $S=S(R)$ and the locally most powerful signed rank tests (LMPSRT) $S=S(R^+,V)$ will be found for testing $\Theta = 0$ against $\Theta >0$ or $\Theta <0$ with $F$ being arbitrary and with $F$ symmetric, respectively. (English) | 
| Keyword:
             | 
locally most powerful rank tests | 
| Keyword:
             | 
randomness | 
| Keyword:
             | 
symmetry | 
| MSC:
             | 
62G10 | 
| idZBL:
             | 
Zbl 0953.62044 | 
| idMR:
             | 
MR1609174 | 
| DOI:
             | 
10.1023/A:1023258816397 | 
| . | 
| Date available:
             | 
2009-09-22T17:56:59Z | 
| Last updated:
             | 
2020-07-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/134377 | 
| . | 
| Reference:
             | 
[1] Gibbons, J.D.: On the power of two-sample rank tests on the quality of two distribution functions.J. Royal Stat. Soc., Series B 26 (1964), 293–304. MR 0174120 | 
| Reference:
             | 
[2] Hájek, J.: A course in nonparametric statistics.Holden-Day, New York, 1969. MR 0246467 | 
| Reference:
             | 
[3] Hájek, J., Šidák, Z.: Theory of Rank Tests.Academia, Praha, 1967. MR 0229351 | 
| Reference:
             | 
[4] Nguyen Van Ho: The locally most powerful rank tests.Acta Mathematica Vietnamica, T3, N1 (1978), 14–23. | 
| Reference:
             | 
[5] Lehmann, E.L.: The power of rank tests.AMS 24 (1953), 23–43. Zbl 0050.14702, MR 0054208 | 
| Reference:
             | 
[6] Scheffé, H.: A useful convergence theorem for probability distributions.AMS 18 (1947), 434–438. MR 0021585 | 
| . |