Previous |  Up |  Next

Article

Title: Bayesian estimation of the intraclass correlation coefficients in the mixed linear model (English)
Author: Jelenkowska, Teresa H.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 2
Year: 1998
Pages: 103-110
Summary lang: English
.
Category: math
.
Summary: The method of determining Bayesian estimators for the special ratios of variance components called the intraclass correlation coefficients is presented. The exact posterior distribution for these ratios of variance components is obtained. The approximate posterior mean of this distribution is also derived. All computations are non-iterative and avoid numerical integration. (English)
Keyword: Bayesian estimation
Keyword: standard random linear model
Keyword: posterior distribution
Keyword: inverted multidimensional Dirichlet distribution
Keyword: intraclass correlation coefficients
MSC: 62A15
MSC: 62H12
idZBL: Zbl 0937.62026
idMR: MR1609170
DOI: 10.1023/A:1023210900467
.
Date available: 2009-09-22T17:57:05Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134378
.
Reference: [1] Box, G.E.P. and Tiao G.C.: Bayesian Inference in Statistical Analysis.Massachusetts: Addison Wesley, 1973. MR 0418321
Reference: [2] Broemeling, L.D.: Bayesian Analysis of Linear Models.Marcel Dekker, New York, 1985. Zbl 0564.62020, MR 0772380
Reference: [3] Cook, P., Broemeling, L.D. and Gharraf, M.: A Bayesian analysis of the mixed linear model.Communications in Statistics A19, No 3 (1990), 987–1002. MR 1075481
Reference: [4] De Groot, M.H.: Optimal Statistical Decisions.McGraw-Hill Co, New York, 1970. MR 0356303
Reference: [5] Gharraf, M.: General Solution to Making Inference about the Parameters of Mixed Linear Models.Ph.D. dissertation, Oklahoma State University, Stillwater, Oklahoma, 1979.
Reference: [6] Hill, B.M.: Inference about variance components in the one-way model.Jour. of the American Statistical Association 60 (1979), 806–825. MR 0187319, 10.1080/01621459.1965.10480829
Reference: [7] Hill, B.M.: Correlated errors in the random model.Journal of the American Statistical Association 62 (1967), 1387–1400. Zbl 0158.37504, MR 0223010, 10.1080/01621459.1967.10500941
Reference: [8] Jelenkowska, T.H.: Bayesian estimation of the variance components in a general random linear model, Bayesian Statistics 3.Oxford Sci. Publ. Oxford Univ. Press, New York (1988), 653–656. MR 1008076
Reference: [9] Press, J.S.: Applied Multivariate Analysis.Holt, Reinhart and Winston, Inc., 1972. Zbl 0276.62051, MR 0420970
Reference: [10] Rajagopal, M. and Broemeling L.D.: Bayesian inference for the variance components of the general mixed model.Communications in Statistics 12, No 6 (1983), 701–724. MR 0696816, 10.1080/03610928308828490
Reference: [11] Searle, S.R.: A Summary of Recently Developed Methods of Estimation of Variance Components.Technical Report, BU-388, Biometrics Unit., Cornell University, Ithaca, New York, 1991.
Reference: [12] Stone, M. and Springer, B.G.F.: A paradox involving quasi-prior distributions.Biometrika 52 (1965), 623–627. MR 0210233, 10.1093/biomet/52.3-4.623
Reference: [13] Tiao, G.C. and Tan, W.Y.: Bayesian analysis of random-effect models in the analysis of variance—I: Posterior distribution of variance components.Biometrika 52 (1965), 37–53. MR 0208765, 10.1093/biomet/52.1-2.37
.

Files

Files Size Format View
AplMat_43-1998-2_3.pdf 297.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo