[2] R. S. Angell, R. E. Kleinman, J. Král: 
Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402. 
MR 0981880[3] M. Brelot: 
Éléments de la théorie classique du potentiel. Centre de documentation universitaire. Paris, 1961. 
MR 0106366[4] Yu. D. Burago, V. G. Maz’ ya: 
Potential theory and function theory for irregular regions. Seminars in mathematics V. A. Steklov Mathematical Institute. Leningrad, 1969. (Russian) 
MR 0240284[5] M. Chlebík: Tricomi potentials. Thesis. Mathematical Institute of the Czechoslovak Academy of Sciences.Praha, 1988. (Slovak)
[7] I. Gohberg, A. Markus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10 (76) (1960), 91–95. (Russian)
[8] N. V. Grachev, V. G. Maz’ya: 
On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19(4) (1986), 60–64. (Russian) 
MR 0880678[9] N. V. Grachev, V. G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-06, Linköping Univ.,Sweden.
[10] N. V. Grachev, V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.
[11] N. V. Grachev, V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
[14] J. Král: 
Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980. 
MR 0590244[16] J. Král, W. L. Wendland: 
Some examples concerning applicability of the Fredholm-Radon method in potential heory. Aplikace matematiky 31 (1986), 239–308. 
MR 0854323[17] N. L. Landkof: 
Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. 
MR 0214795[18] J. Lukeš, J. Malý: 
Measure and Integral. Matfyzpress, 1995. 
MR 2316454[19] V. G. Maz’ya: Boundary integral equations . Sovremennyje problemy matematiki, fundamental’nyje napravlenija , 27. Viniti, Moskva, 1988. (Russian)
[20] D. Medková: 
The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslov. Math. J. 47 (1997), 651–679. 
DOI 10.1023/A:1022818618177 | 
MR 1479311[21] D. Medková: 
Solution of the Neumann problem for the Laplace equation. Czechoslov. Math. J. (in print ). 
MR 1658269[22] I. Netuka: 
The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205–211. 
MR 0287021 | 
Zbl 0215.42602[23] I. Netuka: 
Generalized Robin problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 312–324. 
MR 0294673 | 
Zbl 0241.31008[24] I. Netuka: 
An operator connected with the third boundary value problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 462–489. 
MR 0316733 | 
Zbl 0241.31009[25] I. Netuka: 
The third boundary value problem in potential theory. Czechoslov. Math. J. 2(97) (1972), 554–580. 
MR 0313528 | 
Zbl 0242.31007[26] I. Netuka: 
Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383. 
MR 0419794 | 
Zbl 0314.31006[27] I. Netuka: 
Continuity and maximum principle for potentials of signed measures. Czechoslov. Math. J. 25 (1975), 309–316. 
MR 0382690 | 
Zbl 0309.31019[28] J. Plemelj: Potentialtheoretische Untersuchungen. B. G. Teubner, Leipzig, 1911.
[29] A. Rathsfeld: 
The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Applicable Analysis 45 (1992), 1–4, 135–177. 
DOI 10.1080/00036819208840093 | 
MR 1293594[30] A. Rathsfeld: 
The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum. Applicable Analysis 56 (1995), 109–115. 
DOI 10.1080/00036819508840313 | 
MR 1378015[31] V. D. Sapožnikova: ARRAY(0x9e2e418). Izdat. Leningr. Univ., Leningrad, 1966, pp. 35–44. (Russian Russian)
[32] M. Schechter: 
Principles of Funtional Analysis. Academic Press, London, 1971. 
MR 0445263[33] K. Yosida: 
Functional Analysis. Springer Verlag, 1965. 
Zbl 0126.11504[34] W. P. Ziemer: 
Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Text in Mathematics 120. Springer-Verlag, 1989. 
MR 1014685