Title:
|
Solution of the Robin problem for the Laplace equation (English) |
Author:
|
Medková, Dagmar |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
1998 |
Pages:
|
133-155 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. (English) |
Keyword:
|
Laplace equation |
Keyword:
|
Robin problem |
Keyword:
|
single layer potential |
MSC:
|
31B10 |
MSC:
|
35J05 |
MSC:
|
35J25 |
idZBL:
|
Zbl 0938.31005 |
idMR:
|
MR1609158 |
DOI:
|
10.1023/A:1023267018214 |
. |
Date available:
|
2009-09-22T17:57:24Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134381 |
. |
Reference:
|
[1] J. F. Ahner: The exterior Robin problem for the Helmholtz equations.J. Math. Anal. Appl. 66 (1978), 37–54. MR 0513484, 10.1016/0022-247X(78)90268-8 |
Reference:
|
[2] R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880 |
Reference:
|
[3] M. Brelot: Éléments de la théorie classique du potentiel.Centre de documentation universitaire. Paris, 1961. MR 0106366 |
Reference:
|
[4] Yu. D. Burago, V. G. Maz’ ya: Potential theory and function theory for irregular regions. Seminars in mathematics V. A. Steklov Mathematical Institute.Leningrad, 1969. (Russian) MR 0240284 |
Reference:
|
[5] M. Chlebík: Tricomi potentials. Thesis.Mathematical Institute of the Czechoslovak Academy of Sciences.Praha, 1988. (Slovak) |
Reference:
|
[6] H. Federer: Geometric Measure Theory.Springer-Verlag, 1969. Zbl 0176.00801, MR 0257325 |
Reference:
|
[7] I. Gohberg, A. Markus: Some remarks on topologically equivalent norms.Izvestija Mold. Fil. Akad. Nauk SSSR 10 (76) (1960), 91–95. (Russian) |
Reference:
|
[8] N. V. Grachev, V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ. 19(4) (1986), 60–64. (Russian) MR 0880678 |
Reference:
|
[9] N. V. Grachev, V. G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-06, Linköping Univ.,Sweden. |
Reference:
|
[10] N. V. Grachev, V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-07, Linköping Univ., Sweden. |
Reference:
|
[11] N. V. Grachev, V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. |
Reference:
|
[12] H. Heuser: Funktionalanalysis.Teubner, Stuttgart, 1975. Zbl 0309.47001, MR 0482021 |
Reference:
|
[13] R. E. Kleinman, W. L. Wendland: On Neumann’ s method for the Helmholtz equation.J. Math. Anal. Appl. 57 (1977), 170–202. MR 0430513, 10.1016/0022-247X(77)90294-3 |
Reference:
|
[14] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer-Verlag, Berlin, 1980. MR 0590244 |
Reference:
|
[15] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580 |
Reference:
|
[16] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential heory.Aplikace matematiky 31 (1986), 239–308. MR 0854323 |
Reference:
|
[17] N. L. Landkof: Fundamentals of Modern Potential Theory.Izdat. Nauka, Moscow, 1966. MR 0214795 |
Reference:
|
[18] J. Lukeš, J. Malý: Measure and Integral.Matfyzpress, 1995. MR 2316454 |
Reference:
|
[19] V. G. Maz’ya: Boundary integral equations . Sovremennyje problemy matematiki, fundamental’nyje napravlenija , 27.Viniti, Moskva, 1988. (Russian) |
Reference:
|
[20] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czechoslov. Math. J. 47 (1997), 651–679. MR 1479311, 10.1023/A:1022818618177 |
Reference:
|
[21] D. Medková: Solution of the Neumann problem for the Laplace equation.Czechoslov. Math. J. (in print ). MR 1658269 |
Reference:
|
[22] I. Netuka: The Robin problem in potential theory.Comment. Math. Univ. Carolinae 12 (1971), 205–211. Zbl 0215.42602, MR 0287021 |
Reference:
|
[23] I. Netuka: Generalized Robin problem in potential theory.Czechoslov. Math. J. 22(97) (1972), 312–324. Zbl 0241.31008, MR 0294673 |
Reference:
|
[24] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslov. Math. J. 22(97) (1972), 462–489. Zbl 0241.31009, MR 0316733 |
Reference:
|
[25] I. Netuka: The third boundary value problem in potential theory.Czechoslov. Math. J. 2(97) (1972), 554–580. Zbl 0242.31007, MR 0313528 |
Reference:
|
[26] I. Netuka: Fredholm radius of a potential theoretic operator for convex sets.Čas. pěst. mat. 100 (1975), 374–383. Zbl 0314.31006, MR 0419794 |
Reference:
|
[27] I. Netuka: Continuity and maximum principle for potentials of signed measures.Czechoslov. Math. J. 25 (1975), 309–316. Zbl 0309.31019, MR 0382690 |
Reference:
|
[28] J. Plemelj: Potentialtheoretische Untersuchungen.B. G. Teubner, Leipzig, 1911. |
Reference:
|
[29] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method.Applicable Analysis 45 (1992), 1–4, 135–177. MR 1293594, 10.1080/00036819208840093 |
Reference:
|
[30] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum.Applicable Analysis 56 (1995), 109–115. MR 1378015, 10.1080/00036819508840313 |
Reference:
|
[31] V. D. Sapožnikova: ARRAY(0x9e2e418).Izdat. Leningr. Univ., Leningrad, 1966, pp. 35–44. (Russian Russian) |
Reference:
|
[32] M. Schechter: Principles of Funtional Analysis.Academic Press, London, 1971. MR 0445263 |
Reference:
|
[33] K. Yosida: Functional Analysis.Springer Verlag, 1965. Zbl 0126.11504 |
Reference:
|
[34] W. P. Ziemer: Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Text in Mathematics 120.Springer-Verlag, 1989. MR 1014685 |
. |