Previous |  Up |  Next

Article

Title: On caustics associated with the linearized vorticity equation (English)
Author: Ivanova, Petya N.
Author: Gorman, Arthur D.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 4
Year: 1998
Pages: 255-262
Summary lang: English
.
Category: math
.
Summary: The linearized vorticity equation serves to model a number of wave phenomena in geophysical fluid dynamics. One technique that has been applied to this equation is the geometrical optics, or multi-dimensional WKB technique. Near caustics, this technique does not apply. A related technique that does apply near caustics is the Lagrange Manifold Formalism. Here we apply the Lagrange Manifold Formalism to determine an asymptotic solution of the linearized vorticity equation and to study associated wave phenomena on the caustic curve. (English)
Keyword: Linearized vorticity equation
Keyword: caustics
Keyword: turning points
Keyword: WKB
MSC: 34E20
MSC: 35Q35
idZBL: Zbl 0938.34048
idMR: MR1627993
DOI: 10.1023/A:1023265821269
.
Date available: 2009-09-22T17:58:15Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134389
.
Reference: [1] Haltiner G. J., Williams R. T.: Numerical Prediction and Dynamic Meteorology.2nd Edition, John Wiley & Sons, New York, 1980.
Reference: [2] Yang H.: Evolution of a Rossby wave packet in barotropic flows with asymmetric basic current, topography and $\delta $-effect.J. Atmos. Sci. 44 (1987), 2267–2276. 10.1175/1520-0469(1987)044<2267:EOARWP>2.0.CO;2
Reference: [3] Keller J. B.: A Geometrical Theory of Diffraction in Calculus of Variations and its Applications.Vol. VIII, Proc. Symp. Appl. Math., ed. L.M. Graves, McGraw-Hill, New York, 1958. MR 0094120
Reference: [4] Karoly D. J., Hoskins B. J.: Three dimensional propagation of planetary waves.J. Meteor. Soc. Japan. 60 (1982), 109–123. 10.2151/jmsj1965.60.1_109
Reference: [5] Yang H.: Wave Packets and their Bifurcation in Geophysical Fluid Dynamics.Springer-Verlag, New York, 1991. MR 1077832
Reference: [6] Knessl C., Keller J. B.: Rossby waves.Stud. Apl. Math. 94 (1995), 359–376. MR 1330881, 10.1002/sapm1995944359
Reference: [7] Karoly D. J.: Rossby wave propagation in a barotropic atmosphere.Dyn. Oceans and Atmos. 7 (1983), 111–125.
Reference: [8] Gnevyshev V. G., Shira V. I.: Monochromatic Rossby wave transformation in zonal critical layers.Izv. Atmos. Ocean Phys. 25 (1989), 628–635. MR 1083856
Reference: [9] Arnol’d V. I.: Characteristic class entering in quantification conditions.Funct. Anal. Appl. 1 (1967), 1–13. MR 0211415, 10.1007/BF01075861
Reference: [10] Maslov V. P.: Theorie des Perturbationes et Methodes Asymptotique.Dunod, Gauthier-Villars, Paris, 1972.
Reference: [11] Gorman A. D.: On caustics associated with Rossby waves.Appl. Math. 4 (1996), 321–328. Zbl 0870.34059, MR 1404544
.

Files

Files Size Format View
AplMat_43-1998-4_2.pdf 275.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo