Previous |  Up |  Next

Article

Title: Epsilon-inflation with contractive interval functions (English)
Author: Mayer, Günter
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 4
Year: 1998
Pages: 241-254
Summary lang: English
.
Category: math
.
Summary: For contractive interval functions $ [g] $ we show that $ [g]([x]^{k_0}_\epsilon ) \subseteq \int ([x]^{k_0}_\epsilon ) $ results from the iterative process $ [x]^{k+1} := [g]([x]^k_\epsilon ) $ after finitely many iterations if one uses the epsilon-inflated vector $ [x]^k_\epsilon $ as input for $ [g] $ instead of the original output vector $ [x]^k $. Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way. (English)
Keyword: epsilon-inflation
Keyword: P-contraction
Keyword: contraction
Keyword: verification algorithms
Keyword: interval computation
Keyword: nonlinear equations
Keyword: eigenvalues
Keyword: singular values
MSC: 65F05
MSC: 65F10
MSC: 65F15
MSC: 65G05
MSC: 65G10
MSC: 65G50
MSC: 65H10
MSC: 65H15
MSC: 65L05
idZBL: Zbl 0938.65058
idMR: MR1627997
DOI: 10.1023/A:1023297204431
.
Date available: 2009-09-22T17:58:09Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134388
.
Reference: [A87b] G. Alefeld: Rigorous Error Bounds for Singular Values of a Matrix Using the Precise Scalar Product.Computerarithmetic, E. Kaucher, U. Kulisch and Ch. Ullrich (eds.), Teubner, Stuttgart, 1987, pp. 9–30. MR 0904306
Reference: [AH83] G. Alefeld and J. Herzberger: Introduction to Interval Computations.Academic Press, New York, 1983. MR 0733988
Reference: [AS86] G. Alefeld and H. Spreuer: Iterative improvement of componentwise error bounds for invariant subspaces belonging to a double or nearly double eigenvalue.Computing 36 (1986), 321–334. MR 0843941, 10.1007/BF02240207
Reference: [CM78] O. Caprani and K. Madsen: Iterative methods for interval inclusion of fixed points.BIT 18 (1978), 42–51. MR 0478583, 10.1007/BF01947742
Reference: [G89] K. Grüner: Solving the Complex Algebraic Eigenvalue Problem with Verified High Accuracy.Accurate Numerical Algorithms, A Collection of Research Papers, Research Reports ESPRIT, Project 1072, DIAMOND, Vol. 1, Ch. Ullrich and J. Wolff von Gudenberg (eds.), Springer, Berlin, 1989, pp. 59–78.
Reference: [K90] S. König: On the Inflation Parameter Used in Self-Validating Methods.Contributions to Computer Arithmetic and Self-Validating Numerical Methods, Ch. Ullrich (ed.), Baltzer, IMACS, Basel, 1990, pp. 127–132. MR 1131093
Reference: [M94b] G. Mayer: Result Verification for Eigenvectors and Eigenvalues.Topics in Validated Computations, J. Herzberger (ed.), Elsevier, Amsterdam, 1994, pp. 209–276. Zbl 0813.65077, MR 1318956
Reference: [M95a] G. Mayer: Über ein Prinzip in der Verifikationsnumerik.Z. angew. Math. Mech. 75 (1995), S II, S 545–S 546.. Zbl 0850.65104
Reference: [M95b] G. Mayer: Epsilon-inflation in verification algorithms.J. Comp. Appl. Math. 60 (1995), 147–169. Zbl 0839.65059, MR 1354653, 10.1016/0377-0427(94)00089-J
Reference: [M95c] G. Mayer: On a unified representation of some interval analytic algorithms.Rostock. Math. Kolloq. 49 (1995), 75–88. Zbl 0861.65049, MR 1392204
Reference: [M96] G. Mayer: Success in Epsilon-Inflation.Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie Verlag, Berlin, 1996, pp. 98–104. Zbl 0848.65035, MR 1394227
Reference: [N90] A. Neumaier: Interval Methods for Systems of Equations.Cambridge University Press, Cambridge, 1990. Zbl 0715.65030, MR 1100928
Reference: [R80] S. M. Rump: Kleine Fehlerschranken bei Matrixproblemen.Thesis, Universität Karlsruhe, 1980. Zbl 0437.65036
Reference: [R83] S. M. Rump: Solving Algebraic Problems with High Accuracy.A New Approach to Scientific Computation, U. W. Kulisch and W. L. Miranker (eds.), Academic Press, New York, 1983, pp. 53–120. Zbl 0597.65018, MR 0751813
Reference: [R86] S. M. Rump: New Results in Verified Inclusions.Accurate Scientific Computation, Lecture Notes in Computer Science Vol.  235, W. L. Miranker and R. A. Toupin (eds.), Springer, Berlin, 1986, pp. 31–69. MR 0868284
Reference: [R92] S. M. Rump: On the solution of interval linear systems.Computing 47 (1992), 337–353. Zbl 0753.65030, MR 1155502, 10.1007/BF02320201
.

Files

Files Size Format View
AplMat_43-1998-4_1.pdf 374.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo