Title:
|
Epsilon-inflation with contractive interval functions (English) |
Author:
|
Mayer, Günter |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
43 |
Issue:
|
4 |
Year:
|
1998 |
Pages:
|
241-254 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For contractive interval functions $ [g] $ we show that $ [g]([x]^{k_0}_\epsilon ) \subseteq \int ([x]^{k_0}_\epsilon ) $ results from the iterative process $ [x]^{k+1} := [g]([x]^k_\epsilon ) $ after finitely many iterations if one uses the epsilon-inflated vector $ [x]^k_\epsilon $ as input for $ [g] $ instead of the original output vector $ [x]^k $. Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way. (English) |
Keyword:
|
epsilon-inflation |
Keyword:
|
P-contraction |
Keyword:
|
contraction |
Keyword:
|
verification algorithms |
Keyword:
|
interval computation |
Keyword:
|
nonlinear equations |
Keyword:
|
eigenvalues |
Keyword:
|
singular values |
MSC:
|
65F05 |
MSC:
|
65F10 |
MSC:
|
65F15 |
MSC:
|
65G05 |
MSC:
|
65G10 |
MSC:
|
65G50 |
MSC:
|
65H10 |
MSC:
|
65H15 |
MSC:
|
65L05 |
idZBL:
|
Zbl 0938.65058 |
idMR:
|
MR1627997 |
DOI:
|
10.1023/A:1023297204431 |
. |
Date available:
|
2009-09-22T17:58:09Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134388 |
. |
Reference:
|
[A87b] G. Alefeld: Rigorous Error Bounds for Singular Values of a Matrix Using the Precise Scalar Product.Computerarithmetic, E. Kaucher, U. Kulisch and Ch. Ullrich (eds.), Teubner, Stuttgart, 1987, pp. 9–30. MR 0904306 |
Reference:
|
[AH83] G. Alefeld and J. Herzberger: Introduction to Interval Computations.Academic Press, New York, 1983. MR 0733988 |
Reference:
|
[AS86] G. Alefeld and H. Spreuer: Iterative improvement of componentwise error bounds for invariant subspaces belonging to a double or nearly double eigenvalue.Computing 36 (1986), 321–334. MR 0843941, 10.1007/BF02240207 |
Reference:
|
[CM78] O. Caprani and K. Madsen: Iterative methods for interval inclusion of fixed points.BIT 18 (1978), 42–51. MR 0478583, 10.1007/BF01947742 |
Reference:
|
[G89] K. Grüner: Solving the Complex Algebraic Eigenvalue Problem with Verified High Accuracy.Accurate Numerical Algorithms, A Collection of Research Papers, Research Reports ESPRIT, Project 1072, DIAMOND, Vol. 1, Ch. Ullrich and J. Wolff von Gudenberg (eds.), Springer, Berlin, 1989, pp. 59–78. |
Reference:
|
[K90] S. König: On the Inflation Parameter Used in Self-Validating Methods.Contributions to Computer Arithmetic and Self-Validating Numerical Methods, Ch. Ullrich (ed.), Baltzer, IMACS, Basel, 1990, pp. 127–132. MR 1131093 |
Reference:
|
[M94b] G. Mayer: Result Verification for Eigenvectors and Eigenvalues.Topics in Validated Computations, J. Herzberger (ed.), Elsevier, Amsterdam, 1994, pp. 209–276. Zbl 0813.65077, MR 1318956 |
Reference:
|
[M95a] G. Mayer: Über ein Prinzip in der Verifikationsnumerik.Z. angew. Math. Mech. 75 (1995), S II, S 545–S 546.. Zbl 0850.65104 |
Reference:
|
[M95b] G. Mayer: Epsilon-inflation in verification algorithms.J. Comp. Appl. Math. 60 (1995), 147–169. Zbl 0839.65059, MR 1354653, 10.1016/0377-0427(94)00089-J |
Reference:
|
[M95c] G. Mayer: On a unified representation of some interval analytic algorithms.Rostock. Math. Kolloq. 49 (1995), 75–88. Zbl 0861.65049, MR 1392204 |
Reference:
|
[M96] G. Mayer: Success in Epsilon-Inflation.Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie Verlag, Berlin, 1996, pp. 98–104. Zbl 0848.65035, MR 1394227 |
Reference:
|
[N90] A. Neumaier: Interval Methods for Systems of Equations.Cambridge University Press, Cambridge, 1990. Zbl 0715.65030, MR 1100928 |
Reference:
|
[R80] S. M. Rump: Kleine Fehlerschranken bei Matrixproblemen.Thesis, Universität Karlsruhe, 1980. Zbl 0437.65036 |
Reference:
|
[R83] S. M. Rump: Solving Algebraic Problems with High Accuracy.A New Approach to Scientific Computation, U. W. Kulisch and W. L. Miranker (eds.), Academic Press, New York, 1983, pp. 53–120. Zbl 0597.65018, MR 0751813 |
Reference:
|
[R86] S. M. Rump: New Results in Verified Inclusions.Accurate Scientific Computation, Lecture Notes in Computer Science Vol. 235, W. L. Miranker and R. A. Toupin (eds.), Springer, Berlin, 1986, pp. 31–69. MR 0868284 |
Reference:
|
[R92] S. M. Rump: On the solution of interval linear systems.Computing 47 (1992), 337–353. Zbl 0753.65030, MR 1155502, 10.1007/BF02320201 |
. |