Previous |  Up |  Next

Article

Title: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle (English)
Author: Práger, Milan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 4
Year: 1998
Pages: 311-320
Summary lang: English
.
Category: math
.
Summary: A boundary value problem for the Laplace equation with Dirichlet and Neumann boundary conditions on an equilateral triangle is transformed to a problem of the same type on a rectangle. This enables us to use, e.g., the cyclic reduction method for computing the numerical solution of the problem. By the same transformation, explicit formulae for all eigenvalues and all eigenfunctions of the corresponding operator are obtained. (English)
Keyword: Laplace operator
Keyword: boundary value problem
Keyword: eigenvalues
Keyword: eigenfunctions
MSC: 35J05
MSC: 35P10
MSC: 65Z05
idZBL: Zbl 0940.35059
idMR: MR1627985
DOI: 10.1023/A:1023269922178
.
Date available: 2009-09-22T17:58:27Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134391
.
Reference: [1] Křížek, M., Neittaanmäki, P.: Finite Element Approximaton of Variational Problems and Applications.Longman Scientific & Technical, Harlow, 1990. MR 1066462
.

Files

Files Size Format View
AplMat_43-1998-4_4.pdf 311.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo