Title:
|
Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle (English) |
Author:
|
Práger, Milan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
43 |
Issue:
|
4 |
Year:
|
1998 |
Pages:
|
311-320 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A boundary value problem for the Laplace equation with Dirichlet and Neumann boundary conditions on an equilateral triangle is transformed to a problem of the same type on a rectangle. This enables us to use, e.g., the cyclic reduction method for computing the numerical solution of the problem. By the same transformation, explicit formulae for all eigenvalues and all eigenfunctions of the corresponding operator are obtained. (English) |
Keyword:
|
Laplace operator |
Keyword:
|
boundary value problem |
Keyword:
|
eigenvalues |
Keyword:
|
eigenfunctions |
MSC:
|
35J05 |
MSC:
|
35P10 |
MSC:
|
65Z05 |
idZBL:
|
Zbl 0940.35059 |
idMR:
|
MR1627985 |
DOI:
|
10.1023/A:1023269922178 |
. |
Date available:
|
2009-09-22T17:58:27Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134391 |
. |
Reference:
|
[1] Křížek, M., Neittaanmäki, P.: Finite Element Approximaton of Variational Problems and Applications.Longman Scientific & Technical, Harlow, 1990. MR 1066462 |
. |