Previous |  Up |  Next

Article

Title: Derivation of BiCG from the conditions defining Lanczos' method for solving a system of linear equations (English)
Author: Tichý, Petr
Author: Zítko, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 5
Year: 1998
Pages: 381-388
Summary lang: English
.
Category: math
.
Summary: Lanczos’ method for solving the system of linear algebraic equations $Ax=b$ consists in constructing a sequence of vectors $x_k$ in such a way that $r_k=b-Ax_k \in r_0+A{\mathcal K}_{k}(A,r_0)$ and $r_k \perp {\mathcal K}_{k}(A^T,\widetilde{r}_0)$. This sequence of vectors can be computed by the BiCG (BiOMin) algorithm. In this paper is shown how to obtain the recurrences of BiCG (BiOMin) directly from this conditions. (English)
Keyword: biorthogonalization
Keyword: linear equations
Keyword: biconjugate gradient method
MSC: 65F10
MSC: 65F25
idZBL: Zbl 0938.65061
idMR: MR1644128
DOI: 10.1023/A:1022238402573
.
Date available: 2009-09-22T17:58:47Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134394
.
Reference: [Brezn–94] C. Brezinski, M. Redivo-Zaglia: Treatment of near-breakdown in the CGS algorithm.Numerical Algorithms 7 (1994), 33–73. MR 1283334, 10.1007/BF02141260
Reference: [Fletch–76] R. Fletcher: Conjugate gradient methods for indefinite systems.Numerical Analysis, Dundee, 1975, G. A. Watson (ed.), Vol. 506 of Lecture Notes in Mathematics, Springer, Berlin, 1976. Zbl 0326.65033, MR 0461857
Reference: [Gutkn–97] M. H. Gutknecht: Lanczos-type Solvers for Nonsymmetric Linear Systems of Equations.Technical Report TR-97-04, Swiss Center for Scientific Computing ETH-Zentrum, Switzerland, 1997. Zbl 0888.65030, MR 1489258
Reference: [Lancz–50] C. Lanczos: An iteration method for the solution of eigenvalue problem of linear differential and integral operators.J. Res. Nat. Bureau Standards 45 (1950). MR 0042791, 10.6028/jres.045.026
Reference: [Lancz–52] C. Lanczos: Solution of systems of linear equations by minimized iterations.J. Res. Nat. Bureau Standards 49 (1952). MR 0051583, 10.6028/jres.049.006
Reference: [Leary–80] D. P. O‘Leary: The block conjugate gradient algorithm.Linear Algebra Appl. 99 (1980), 293–322. MR 0562766
Reference: [Tichý–97] P. Tichý: Behaviour of BiCG and CGS algorithms.Mgr. thesis, Department of Numerical Mathematics, Faculty of Mathematics and Physics Praha, 1997.
Reference: [Weiss–95] R. Weiss: A theoretical overview of Krylov subspace methods.Applied Numerical Mathematics 19 (1995), 207–233. Zbl 0854.65031, MR 1374350, 10.1016/0168-9274(95)00084-4
.

Files

Files Size Format View
AplMat_43-1998-5_3.pdf 325.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo