Previous |  Up |  Next

Article

Title: An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process (English)
Author: Anděl, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 5
Year: 1998
Pages: 389-398
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb{e}_t=(e_{t1},\dots ,e_{tp})^{\prime }$ be a $p$-dimensional nonnegative strict white noise with finite second moments. Let $h_{ij}(x)$ be nondecreasing functions from $[0,\infty )$ onto $[0,\infty )$ such that $h_{ij}(x)\le x$ for $i,j=1,\dots ,p$. Let $\mathbb{U}=(u_{ij})$ be a $p\times p$ matrix with nonnegative elements having all its roots inside the unit circle. Define a process $\mathbb{X}_t=(X_{t1},\dots ,X_{tp})^{\prime }$ by \[ X_{tj}=u_{j1}h_{1j}(X_{t-1,1})+\dots +u_{jp}h_{pj}(X_{t-1,p})+ e_{tj} \] for $j=1,\dots ,p$. A method for estimating $\mathbb{U}$ from a realization $\mathbb{X}_1,\dots ,\mathbb{X}_n$ is proposed. It is proved that the estimators are strongly consistent. (English)
Keyword: autoregressive process
Keyword: estimating parameters
Keyword: multidimensional process
Keyword: nonlinear process
Keyword: nonnegative process
MSC: 62M09
MSC: 62M10
idZBL: Zbl 0953.62091
idMR: MR1644124
DOI: 10.1023/A:1022290419411
.
Date available: 2009-09-22T17:58:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134395
.
Reference: [1] H.-Z. An: Non-negative autoregressive models.J. Time Ser. Anal. 13 (1992), 283–295. Zbl 0767.62070
Reference: [2] H.-Z. An, F. Huang: Estimation for regressive and autoregressive models with non-negative residual errors.J. Time Ser. Anal. 14 (1993), 179–191. MR 1212017
Reference: [3] J. Anděl: On AR(1) processes with exponential white noise.Commun. Statist. – Theory Methods 17 (1988), 1481–1495. Zbl 0639.62082, MR 0945799
Reference: [4] J. Anděl: Nonlinear nonnegative AR(1) processes.Commun. Statist. – Theory Methods 18 (1989), 4029–4037. Zbl 0696.62347, MR 1058926
Reference: [5] J. Anděl: Non-negative autoregressive processes.J. Time Ser. Anal. 10 (1989), 1–11.
Reference: [6] J. Anděl: Nonlinear positive AR(2) processes.Statistics 21 (1990), 591–600. Zbl 0714.62087, MR 1087287, 10.1080/02331889008802269
Reference: [7] J. Anděl, V. Dupač: An extension of the Borel lemma.Comment. Math. Univ. Carolinae 30 (1989), 403–404. MR 1014141
Reference: [8] B. Auestad, D. Tjøstheim: Identification of nonlinear time series: First order characterization and order determination.Biometrika 77 (1990), 669–687. MR 1086681, 10.1093/biomet/77.4.669
Reference: [9] C. B. Bell, E. P. Smith: Inference for non-negative autoregressive schemes.Commun. Statist. – Theory Methods 15 (1986), 2267–2293. MR 0853011, 10.1080/03610928608829248
Reference: [10] R. Davis, W. McCormick: Estimation for first-order autoregressive process with positive or bounded innovations.Stochastic Processes Appl. 31 (1989), 237–250. MR 0998115, 10.1016/0304-4149(89)90090-2
Reference: [11] P. D. Feigin, S. I. Resnick: Estimation for autoregressive processes with positive innovations.Commun. Statist. – Stochastic Models 8 (1992), 479–498. MR 1182425
Reference: [12] D. A. Jones: Stationarity of non-linear autoregressive processes.Tech. Rep., Institute of Hydrology, Wallingford, Oxon, U.K., 1977.
Reference: [13] H. Tong: Non-linear Time Series.Clarendon Press, Oxford, 1990. Zbl 0716.62085
.

Files

Files Size Format View
AplMat_43-1998-5_4.pdf 335.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo