Title:
|
An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process (English) |
Author:
|
Anděl, Jiří |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
43 |
Issue:
|
5 |
Year:
|
1998 |
Pages:
|
389-398 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathbb{e}_t=(e_{t1},\dots ,e_{tp})^{\prime }$ be a $p$-dimensional nonnegative strict white noise with finite second moments. Let $h_{ij}(x)$ be nondecreasing functions from $[0,\infty )$ onto $[0,\infty )$ such that $h_{ij}(x)\le x$ for $i,j=1,\dots ,p$. Let $\mathbb{U}=(u_{ij})$ be a $p\times p$ matrix with nonnegative elements having all its roots inside the unit circle. Define a process $\mathbb{X}_t=(X_{t1},\dots ,X_{tp})^{\prime }$ by \[ X_{tj}=u_{j1}h_{1j}(X_{t-1,1})+\dots +u_{jp}h_{pj}(X_{t-1,p})+ e_{tj} \] for $j=1,\dots ,p$. A method for estimating $\mathbb{U}$ from a realization $\mathbb{X}_1,\dots ,\mathbb{X}_n$ is proposed. It is proved that the estimators are strongly consistent. (English) |
Keyword:
|
autoregressive process |
Keyword:
|
estimating parameters |
Keyword:
|
multidimensional process |
Keyword:
|
nonlinear process |
Keyword:
|
nonnegative process |
MSC:
|
62M09 |
MSC:
|
62M10 |
idZBL:
|
Zbl 0953.62091 |
idMR:
|
MR1644124 |
DOI:
|
10.1023/A:1022290419411 |
. |
Date available:
|
2009-09-22T17:58:53Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134395 |
. |
Reference:
|
[1] H.-Z. An: Non-negative autoregressive models.J. Time Ser. Anal. 13 (1992), 283–295. Zbl 0767.62070 |
Reference:
|
[2] H.-Z. An, F. Huang: Estimation for regressive and autoregressive models with non-negative residual errors.J. Time Ser. Anal. 14 (1993), 179–191. MR 1212017 |
Reference:
|
[3] J. Anděl: On AR(1) processes with exponential white noise.Commun. Statist. – Theory Methods 17 (1988), 1481–1495. Zbl 0639.62082, MR 0945799 |
Reference:
|
[4] J. Anděl: Nonlinear nonnegative AR(1) processes.Commun. Statist. – Theory Methods 18 (1989), 4029–4037. Zbl 0696.62347, MR 1058926 |
Reference:
|
[5] J. Anděl: Non-negative autoregressive processes.J. Time Ser. Anal. 10 (1989), 1–11. |
Reference:
|
[6] J. Anděl: Nonlinear positive AR(2) processes.Statistics 21 (1990), 591–600. Zbl 0714.62087, MR 1087287, 10.1080/02331889008802269 |
Reference:
|
[7] J. Anděl, V. Dupač: An extension of the Borel lemma.Comment. Math. Univ. Carolinae 30 (1989), 403–404. MR 1014141 |
Reference:
|
[8] B. Auestad, D. Tjøstheim: Identification of nonlinear time series: First order characterization and order determination.Biometrika 77 (1990), 669–687. MR 1086681, 10.1093/biomet/77.4.669 |
Reference:
|
[9] C. B. Bell, E. P. Smith: Inference for non-negative autoregressive schemes.Commun. Statist. – Theory Methods 15 (1986), 2267–2293. MR 0853011, 10.1080/03610928608829248 |
Reference:
|
[10] R. Davis, W. McCormick: Estimation for first-order autoregressive process with positive or bounded innovations.Stochastic Processes Appl. 31 (1989), 237–250. MR 0998115, 10.1016/0304-4149(89)90090-2 |
Reference:
|
[11] P. D. Feigin, S. I. Resnick: Estimation for autoregressive processes with positive innovations.Commun. Statist. – Stochastic Models 8 (1992), 479–498. MR 1182425 |
Reference:
|
[12] D. A. Jones: Stationarity of non-linear autoregressive processes.Tech. Rep., Institute of Hydrology, Wallingford, Oxon, U.K., 1977. |
Reference:
|
[13] H. Tong: Non-linear Time Series.Clarendon Press, Oxford, 1990. Zbl 0716.62085 |
. |