Previous |  Up |  Next

Article

Title: Local Lipschitz continuity of the stop operator (English)
Author: Desch, Wolfgang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 6
Year: 1998
Pages: 461-477
Summary lang: English
.
Category: math
.
Summary: On a closed convex set $Z$ in ${\mathbb{R}}^N$ with sufficiently smooth (${\mathcal W}^{2,\infty }$) boundary, the stop operator is locally Lipschitz continuous from ${\mathbf W}^{1,1}([0,T],{\mathbb{R}}^N) \times Z$ into ${\mathbf W}^{1,1}([0,T],{\mathbb{R}}^N)$. The smoothness of the boundary is essential: A counterexample shows that ${\mathcal C}^1$-smoothness is not sufficient. (English)
Keyword: hysteresis
Keyword: stop operator
Keyword: differential inclusion
Keyword: Lipschitz continuity
MSC: 34A60
MSC: 47H30
MSC: 47J40
MSC: 49J40
idZBL: Zbl 0937.47058
idMR: MR1652108
DOI: 10.1023/A:1023221405455
.
Date available: 2009-09-22T17:59:24Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134399
.
Reference: [1] M. Berger and B. Gostiaux: Differential Geometry: Manifolds, Curves, and Surfaces.Graduate Texts in Mathematics 115, Springer, New York, 1988. MR 0917479
Reference: [2] M. Brokate and P. Krejčí: Wellposedness of kinematic hardening models in elastoplasticity.Christian-Albrechts-Universität Kiel, Berichtsreihe des Mathematischen Seminars Kiel, Bericht 96–4, Februar 1996.
Reference: [3] M. Brokate and J. Sprekels: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121, Springer, New York, 1996. MR 1411908
Reference: [4] W. Desch and J. Turi: The stop operator related to a convex polyhedron.Manuscript.
Reference: [5] J. Dieudonné: Foundations of Modern Analysis.Academic Press, New York, London, 1969. MR 0349288
Reference: [6] M. A. Krasnosel’skii and A. V. Pokrovskii: Systems with Hysteresis.Springer, Berlin, 1989. MR 0987431
Reference: [7] P. Krejčí: Vector hysteresis models.Euro. J. of Applied Math. 2 (1991), 281–292. MR 1123144, 10.1017/S0956792500000541
Reference: [8] P. Krejčí: Hysteresis, Convexity, and Dissipation in Hyperbolic Equations.Gakkotosho, Tokyo, 1996. MR 2466538
Reference: [9] P. Krejčí: Evolution variational inequalities and multidimensional hysteresis operators.Manuscript.
Reference: [10] P. Krejčíand V. Lovicar: Continuity of hysteresis operators in Sobolev spaces.Appl. Math. 35 (1990), 60–66. MR 1039411
Reference: [11] A. Visintin: Differential Models of Hysteresis.Springer, Berlin, 1994. Zbl 0820.35004, MR 1329094
.

Files

Files Size Format View
AplMat_43-1998-6_4.pdf 387.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo