Previous |  Up |  Next

Article

Title: Discontinuous wave equations and a topological degree for some classes of multi-valued mappings (English)
Author: Fečkan, Michal
Author: Kollár, Richard
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 1
Year: 1999
Pages: 15-32
Summary lang: English
.
Category: math
.
Summary: The Leray-Schauder degree is extended to certain multi-valued mappings on separable Hilbert spaces with applications to the existence of weak periodic solutions of discontinuous semilinear wave equations with fixed ends. (English)
Keyword: discontinuous wave equations
Keyword: topological degree
Keyword: multi-valued mappings
MSC: 35L05
MSC: 35L70
MSC: 47H17
MSC: 58C06
idZBL: Zbl 1060.35524
idMR: MR1666854
DOI: 10.1023/A:1022216119044
.
Date available: 2009-09-22T17:59:45Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134403
.
Reference: [1] J. Berkovits: Some bifurcation results for a class of semilinear equations via topological degree method.Bull. Soc. Math. Belg. 44 (1992), 237–247. Zbl 0783.47069, MR 1314039
Reference: [2] J. Berkovits & V. Mustonen: An extension of Leray-Schauder degree and applications to nonlinear wave equations.Diff. Int. Eqns. 3 (1990), 945–963. MR 1059342
Reference: [3] J. Berkovits & V. Mustonen: Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems.Rend. Mat. VII-12 (1992), 597–621. MR 1205967
Reference: [4] H. Brezis: Periodic solutions of nonlinear vibrating strings and duality principles.Bull. Amer. Math. Soc. 8 (1983), 409–426. Zbl 0537.35055, MR 0693957, 10.1090/S0273-0979-1983-15105-4
Reference: [5] F. E. Browder: Fixed point theory and nonlinear problems.Bull. Amer. Math. Soc. 9 (1983), 1–39. Zbl 0533.47053, MR 0699315, 10.1090/S0273-0979-1983-15153-4
Reference: [6] K. C. Chang: Free boundary problems and the set-valued mappings.J. Differential Eqns. 49 (1983), 1–28. Zbl 0533.35088, MR 0704263, 10.1016/0022-0396(83)90018-9
Reference: [7] K. Deimling: Nonlinear Functional Analysis.Springer-Verlag, Berlin, 1985. Zbl 0559.47040, MR 0787404
Reference: [8] H. Gajewski, K. Gröger & K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin, 1974. MR 0636412
Reference: [9] A. Kittilä: On the topological degree for a class of mappings of monotone type and applications to strongly nonlinear elliptic problems.Ann. Acad. Sci. Fenn. Ser. A I Math. Disser. 91 (1994). MR 1263099
Reference: [10] W. Rudin: Real and Complex Analysis.McGraw-Hill, Inc., New York, 1974. Zbl 0278.26001, MR 0344043
.

Files

Files Size Format View
AplMat_44-1999-1_2.pdf 392.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo