Previous |  Up |  Next

Article

Title: How to get Central Limit Theorems for global errors of estimates (English)
Author: Berlinet, Alain
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 2
Year: 1999
Pages: 81-96
Summary lang: English
.
Category: math
.
Summary: The asymptotic behavior of global errors of functional estimates plays a key role in hypothesis testing and confidence interval building. Whereas for pointwise errors asymptotic normality often easily follows from standard Central Limit Theorems, global errors asymptotics involve some additional techniques such as strong approximation, martingale theory and Poissonization. We review these techniques in the framework of density estimation from independent identically distributed random variables, i.e., the context for which they were introduced. This will avoid the mathematical difficulties associated with more complex statistical situations in which these tools have proved to be useful. (English)
Keyword: Central Limit Theorem
Keyword: global errors
Keyword: strong approximation
Keyword: empirical processes
Keyword: $U$-statistics
Keyword: Poissonization
MSC: 60F05
MSC: 60F17
MSC: 60F25
MSC: 62G05
MSC: 62G20
idZBL: Zbl 1060.62056
idMR: MR1667632
DOI: 10.1023/A:1022240820668
.
Date available: 2009-09-22T18:00:11Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134407
.
Reference: [1] Barbour, A. D., Holst, L. and Janson, S.: Poisson Approximation.University Press, Oxford, 1992. MR 1163825
Reference: [2] Barron, A. R.: The convergence in information of probability density estimators.(1988), Presented at IEEE ISIT, Kobe, Japan, June 19–24, 1988.
Reference: [3] Barron, A. R., Györfi, L. and van der Meulen, E. C.: Distribution estimates consistent in total variation and in two types of information divergence.IEEE Trans. on Information Theory 38 (1992), 1437–1454. MR 1178189, 10.1109/18.149496
Reference: [4] Beirlant, J., Györfi, L. and Lugosi, G.: On the asymptotic normality of the $L_1$ and $L_2$ errors in histogram density estimation.Canadian Journal of Statistics 3 (1994), 309–318. 10.2307/3315594
Reference: [5] Beirlant, J. and Mason, D. M.: On the asymptotic normality of $L_p$ norms of empirical functionals.Mathematical Methods of Statistics 4 (1994), 1–15. MR 1324687
Reference: [6] Berlinet, A.: Central limit theorems in functional estimation.Bulletin of the International Statistical Institute 56 (1995), 531–548. Zbl 0880.62041
Reference: [7] Berlinet, A., Devroye, L. and Györfi, L.: Asymptotic normality of $L_1$ error in density estimation.Statistics 26 (1995), 329–343. MR 1365682, 10.1080/02331889508802500
Reference: [8] Berlinet, A., Györfi, L. and van der Meulen, E. C.: Asymptotic normality of relative entropy in multivariate density estimation.Revue de l’Institut de Statistique de l’Université de Paris 41 (1997), 3–27. MR 1743681
Reference: [9] Berlinet, A., Vajda, I. and van der Meulen, E. C.: About the Asymptotic Accuracy of Barron density estimates.Trans. IEEE on Inform. Theory 44 (19981998), 999–1009. MR 1616679, 10.1109/18.669143
Reference: [10] Bickel, P. and Rosenblatt, M.: On some global measures of the deviation of density function estimates.The Annals of Statistics 1 (1973), 1071–1095. MR 0348906, 10.1214/aos/1176342558
Reference: [11] Csörgő, M. and Horváth, L.: Weighted Approximations in Probability and Statistics.Wiley, New York, 1993. MR 1215046
Reference: [12] Györfi, L., Liese, F., Vajda, I. and van der Meulen, E. C.: Distribution estimates consistent in $\chi ^2$-divergence.Statistics 32 (1998), 31–58. MR 1708074, 10.1080/02331889808802651
Reference: [13] Hall, P.: Central limit theorem for integrated square error of multivariate nonparametric density estimators.Journal of Multivariate Analysis 14 (1984), 1–16. Zbl 0528.62028, MR 0734096, 10.1016/0047-259X(84)90044-7
Reference: [14] Heyde, C. C.: Central limit theorem.Encyclopedia of Statistical Sciences 4 (1983), 651–655. MR 0517475
Reference: [15] Horváth, L.: On $L_p$ norms of multivariate density estimators.The Annals of Statistics 19 (1991), 1933–1949. MR 1135157, 10.1214/aos/1176348379
Reference: [16] Johnson, N. L. and Kotz, S.: Urn Models and their Application.Wiley, New York, 1977. MR 0488211
Reference: [17] Kac, S.: On deviations between theoretical and empirical distributions.Proceedings of The National Academy of Sciences of USA 35 (1949), 252–257. Zbl 0033.19303, MR 0029490
Reference: [18] Morris, C.: Central limit theorems for multinomial sums.The Annals of Statistics 3 (1975), 165–188. Zbl 0305.62013, MR 0370871, 10.1214/aos/1176343006
Reference: [19] Pollard, D.: Beyond the Heuristic Approach to Kolmogorov-Smirnov Theorems.Essays in Statistical Science. Festschrift for P. A. P. Moran, J. Gani and E. J. Hannan (eds.), Applied Probability Trust, 1982. Zbl 0495.60008, MR 0633205
Reference: [20] Rosenblatt, M.: A quadratic measure of deviation of two-dimensional density estimates and a test of independence.The Annals of Statistics 3 (1975), 1–14. Zbl 0325.62030, MR 0428579, 10.1214/aos/1176342996
Reference: [21] van der Vaart, A. W. and Wellner, J. A.: Weak Convergence and Empirical Processes with Applications to Statistics.Springer, New York, 1996. MR 1385671
Reference: [22] Shorack, G. R. and Wellner, J. A.: Empirical Processes with Applications to Statistics.Wiley, New York, 1986. MR 0838963
Reference: [23] Steck, G. P.: Limit theorems for conditional distributions.2 (1957), University of California Publications in Statistics, 237–284. Zbl 0077.33104, MR 0091552
Reference: [24] Wellner, J. A.: Empirical processes in action: a review.International Statistical Review 60 (1992), 247–269. Zbl 0757.62028, 10.2307/1403678
.

Files

Files Size Format View
AplMat_44-1999-2_1.pdf 374.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo