Previous |  Up |  Next

Article

Title: Coupled string-beam equations as a model of suspension bridges (English)
Author: Drábek, Pavel
Author: Leinfelder, Herbert
Author: Tajčová, Gabriela
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 2
Year: 1999
Pages: 97-142
Summary lang: English
.
Category: math
.
Summary: We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge. (English)
Keyword: nonlinearly coupled string-beam equation
Keyword: periodic oscillations
Keyword: jumping nonlinearities
Keyword: degree theory
MSC: 35B10
MSC: 35Q72
MSC: 70K30
MSC: 73K03
MSC: 73K05
MSC: 74H20
MSC: 74H25
MSC: 74H45
MSC: 74K10
idZBL: Zbl 1059.74522
idMR: MR1667633
DOI: 10.1023/A:1022257304738
.
Date available: 2009-09-22T18:00:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134408
.
Reference: [AO] J. M. Alonso, R. Ortega: Global asymptotic stability of a forced Newtonian system with dissipation.J. Math. Anal. Applications 196 (1995), 965–986. MR 1365234, 10.1006/jmaa.1995.1454
Reference: [BDL] J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen, G. Tajčová: Time-periodic oscillations in suspension bridges: existence of unique solutions.Nonlinear Analysis, Theory, Methods & Applications.
Reference: [CCJ] Q. H. Choi, K. Choi, T. Jung: The existence of solutions of a nonlinear suspension bridge equation.Bull. Korean Math. Soc. 33 (1996), 503–512. MR 1424092
Reference: [${\mathrm D}_1$] P. Drábek: Jumping nonlinearities and mathematical models of suspension bridges.Acta Math. Inf. Univ. Ostraviensis 2 (1994), 9–18. MR 1309060
Reference: [${\mathrm D}_2$] P. Drábek: Nonlinear noncoercive equations and applications.Z. Anal. Anwendungen 1 (1983), 53–65. MR 0720043, 10.4171/ZAA/35
Reference: [FK] S. Fučík, A. Kufner: Nonlinear Differential Equations.Elsevier, Holland, 1980. MR 0558764
Reference: [FSZ] A. Fonda, Z. Schneider, F. Zanolin: Periodic oscillations for a nonlinear suspension bridge model.J. Comput. Appl. Math. 52 (1994), 113–140. MR 1310126, 10.1016/0377-0427(94)90352-2
Reference: [GLK] J. Glover, A. C. Lazer, P. J. McKenna: Existence and stability of large scale nonlinear oscillations in suspension bridges.J. Appl. Math. Physics (ZAMP) 40 (1989), 172–200. MR 0990626, 10.1007/BF00944997
Reference: [KJF] A. Kufner, O. John, S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [${\mathrm LK}_1$] A. C. Lazer, P. J. McKenna: Fredholm theory for periodic solutions of some semilinear P.D.Es with homogeneous nonlinearities.Contemporary Math. 107 (1990), 109–122. MR 1066474, 10.1090/conm/107/1066474
Reference: [${\mathrm LK}_2$] A. C. Lazer, P. J. McKenna: A semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities.Proc. Amer. Math. Society 106 (1989), 119–125. MR 0942635, 10.1090/S0002-9939-1989-0942635-9
Reference: [${\mathrm LK}_3$] A. C. Lazer, P. J. McKenna: Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities.Trans. Amer. Math. Society 315 (1989), 721–739. MR 0979963, 10.1090/S0002-9947-1989-0979963-1
Reference: [${\mathrm LK}_4$] A. C. Lazer, P. J. McKenna: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis.SIAM Review 32 (1990), 537–578. MR 1084570, 10.1137/1032120
Reference: [${\mathrm LK}_5$] A. C. Lazer, P. J. McKenna: Large scale oscillatory behaviour in loaded asymmetric systems.Ann. Inst. Henri Poincaré, Analyse non lineaire 4 (1987), 244–274. MR 0898049
Reference: [KW] P. J. McKenna, W. Walter: Nonlinear oscillations in a suspension bridge.Arch. Rational Mech. Anal. 98 (1987), 167–177. MR 0866720, 10.1007/BF00251232
Reference: [PW] M. H. Protter, H. F. Weinberger: Maximum Principles in Differential Equations.Springer-Verlag New York, 1984. MR 0762825
Reference: [T] G. Tajčová: Mathematical models of suspension bridges.Appl. Math. 42 (1997), 451–480. MR 1475052, 10.1023/A:1022255113612
Reference: [V] O. Vejvoda et al.: Partial Differential Equations—time periodic solutions.Sijthoff Nordhoff, The Netherlands, 1981.
Reference: [W] J. Weidmann: Linear Operators in Hilbert Spaces.Springer-Verlag, New York-Heidelberg-Berlin 1980. Zbl 1025.47001, MR 0566954
.

Files

Files Size Format View
AplMat_44-1999-2_2.pdf 617.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo