Title:
|
Domain decomposition methods for solving the Burgers equation (English) |
Author:
|
Cimrman, Robert |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
44 |
Issue:
|
6 |
Year:
|
1999 |
Pages:
|
421-434 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This article presents some results of numerical tests of solving the two-dimensional non-linear unsteady viscous Burgers equation. We have compared the known convergence and parallel performance properties of the additive Schwarz domain decomposition method with or without a coarse grid for the model Poisson problem with those obtained by experiments for the Burgers problem. (English) |
Keyword:
|
domain decomposition |
Keyword:
|
multilevel methods |
Keyword:
|
fluid mechanics |
Keyword:
|
Burgers equation |
MSC:
|
65M55 |
MSC:
|
76D99 |
MSC:
|
76M25 |
idZBL:
|
Zbl 1060.65647 |
idMR:
|
MR1727980 |
DOI:
|
10.1023/A:1022220820745 |
. |
Date available:
|
2009-09-22T18:01:43Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134419 |
. |
Reference:
|
[angot94:paralmultileveldomaindecommethod] P. Angot: Parallel Multi-Level and Domain Decomposition Methods.Calculateurs Parallèles L.T.C.P. 6(4) (1994). |
Reference:
|
[kortas96:practicmodelprogram] S. Kortas and P. Angot: A practical and portable model of programming for iterative solvers on distributed memory machines.Parallel Computing 22 (1996), 478–512. |
Reference:
|
[le94:domaindecommethodcomputmechan] P. Le Tallec: Domain Decomposition Methods in Computational Mechanics.Comput. Mech. Adv. (1994). Zbl 0802.73079, MR 1263805 |
Reference:
|
[roache72:computfluiddynam] P. J. Roache: Computational Fluid Dynamics.Hermosa Publishers, 1972. Zbl 0251.76002, MR 0411358 |
Reference:
|
[smith96:domaindecom] B. Smith, P. Bjœrstad, and W. Gropp: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations.Cambridge Univ. Press, 1996. MR 1410757 |
Reference:
|
[vandervorst92:bicgstab] H. A. Van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant of BiCG for the solution of non-symmetric linear systems.SIAM J. Sci. Statist. Comput. 13 (1992), 631–644. MR 1149111, 10.1137/0913035 |
. |