Previous |  Up |  Next

Article

Title: Algebraic domain decomposition solver for linear elasticity (English)
Author: Janka, Aleš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 6
Year: 1999
Pages: 435-458
Summary lang: English
.
Category: math
.
Summary: We generalize the overlapping Schwarz domain decomposition method to problems of linear elasticity. The convergence rate independent of the mesh size, coarse-space size, Korn’s constant and essential boundary conditions is proved here. Abstract convergence bounds developed here can be used for an analysis of the method applied to singular perturbations of other elliptic problems. (English)
Keyword: algebraic multigrid
Keyword: zero energy modes
Keyword: convergence theory
Keyword: finite elements
Keyword: computational mechanics
Keyword: iterative solvers
MSC: 65F10
MSC: 65N55
MSC: 74B05
MSC: 74S05
idZBL: Zbl 1060.74628
idMR: MR1727981
DOI: 10.1023/A:1022272804816
.
Date available: 2009-09-22T18:01:49Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134420
.
Reference: [1] R. A. Adams: Sobolev Spaces.Academic Press, London, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] P. E. Bjørstad, J. Mandel: On the spectra of sums of orthogonal projections with applications to parallel computing.BIT 31 (1991), 76–88. MR 1097483, 10.1007/BF01952785
Reference: [3] J. H. Bramble: Multigrid Methods.Pitman Res. Notes Math. Ser. 296, Longman Scientific and Technical, 1993. MR 1247694
Reference: [4] J. H. Bramble, J. E. Pasciak, J. Wang, J. Xu: Convergence estimates for product iterative methods with applications to domain decomposition and multigrid.Math. Comp. 57 (1991), 1–21. MR 1090464, 10.1090/S0025-5718-1991-1090464-8
Reference: [5] M. Brezina, P. Vaněk: One Black-box Iterative Solver.University of Colorado, Denver, 1997, to appear.
Reference: [6] C. M. Dafermos: Some remarks on Korn’s inequality.ZAMP 19 (1968), 913–920. MR 0239797, 10.1007/BF01602271
Reference: [7] M. Dryja, O. Widlund: An additive variant of the Schwarz method for the case of many subregions.Technical Report, Courant Institute of Mathematical Sciences 339, 1987.
Reference: [8] V. A. Konratiev, O. A. Oleinik: Hardy’s and Korn’s type inequalities and their applications.Rend. Mat. Appl. (7) 10 (1990), 641–666. MR 1080319
Reference: [9] J. Nečas, I. Hlaváček: Introduction to the Mathematical Theory of Elastic and Elasto-plastic Bodies.TKI, SNTL Praha, 1983. (Czech)
Reference: [10] K. Rektorys: Variational Methods in Engineering and Problems of Mathematical Physics.TKI, SNTL Praha, 1974. (Czech)
Reference: [11] P. Vaněk: Acceleration of convergence of a two-level algorithm by smoothing transfer operator.Appl. Math. 37 (1992), 265–274. MR 1180605
Reference: [12] P. Vaněk, M. Brezina, J. Mandel: Convergence of Algebraic Multigrid Based on Smoothed Aggregation.University of Colorado, March 1998, to appear. MR 1835471
Reference: [13] P. Vaněk, M. Brezina, R. Tezaur: Two-level method for solids on unstructured meshes.(to appear).
Reference: [14] P. Vaněk, J.  Křížková: Two-level Method on Unstructured Meshes With Convergence Rate Independent of the Coarse-Space Size.University of West Bohemia, Plzeň, preprint no. 70, Jan 1995.
Reference: [15] P. Vaněk, J. Mandel, M. Brezina: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179–196. MR 1393006, 10.1007/BF02238511
Reference: [16] J. Xu: Iterative methods by space decomposition and subspace correction.Siam Review 34, 4 (1992), 581–613. Zbl 0788.65037, MR 1193013, 10.1137/1034116
Reference: [17] J. Xu: An Introduction to Multilevel Methods.VII. Numerical Analysis Summer School, University of Leicester, UK, to be published by Oxford University Press. MR 1600688
.

Files

Files Size Format View
AplMat_44-1999-6_4.pdf 873.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo