Previous |  Up |  Next


algebraic multigrid; zero energy modes; convergence theory; finite elements; computational mechanics; iterative solvers
We generalize the overlapping Schwarz domain decomposition method to problems of linear elasticity. The convergence rate independent of the mesh size, coarse-space size, Korn’s constant and essential boundary conditions is proved here. Abstract convergence bounds developed here can be used for an analysis of the method applied to singular perturbations of other elliptic problems.
[1] R. A. Adams: Sobolev Spaces. Academic Press, London, 1975. MR 0450957 | Zbl 0314.46030
[2] P. E. Bjørstad, J. Mandel: On the spectra of sums of orthogonal projections with applications to parallel computing. BIT 31 (1991), 76–88. DOI 10.1007/BF01952785 | MR 1097483
[3] J. H. Bramble: Multigrid Methods. Pitman Res. Notes Math. Ser. 296, Longman Scientific and Technical, 1993. MR 1247694
[4] J. H. Bramble, J. E. Pasciak, J. Wang, J. Xu: Convergence estimates for product iterative methods with applications to domain decomposition and multigrid. Math. Comp. 57 (1991), 1–21. DOI 10.1090/S0025-5718-1991-1090464-8 | MR 1090464
[5] M. Brezina, P. Vaněk: One Black-box Iterative Solver. University of Colorado, Denver, 1997, to appear.
[6] C. M. Dafermos: Some remarks on Korn’s inequality. ZAMP 19 (1968), 913–920. DOI 10.1007/BF01602271 | MR 0239797
[7] M. Dryja, O. Widlund: An additive variant of the Schwarz method for the case of many subregions. Technical Report, Courant Institute of Mathematical Sciences 339, 1987.
[8] V. A. Konratiev, O. A. Oleinik: Hardy’s and Korn’s type inequalities and their applications. Rend. Mat. Appl. (7) 10 (1990), 641–666. MR 1080319
[9] J. Nečas, I. Hlaváček: Introduction to the Mathematical Theory of Elastic and Elasto-plastic Bodies. TKI, SNTL Praha, 1983. (Czech)
[10] K. Rektorys: Variational Methods in Engineering and Problems of Mathematical Physics. TKI, SNTL Praha, 1974. (Czech)
[11] P. Vaněk: Acceleration of convergence of a two-level algorithm by smoothing transfer operator. Appl. Math. 37 (1992), 265–274. MR 1180605
[12] P. Vaněk, M. Brezina, J. Mandel: Convergence of Algebraic Multigrid Based on Smoothed Aggregation. University of Colorado, March 1998, to appear. MR 1835471
[13] P. Vaněk, M. Brezina, R. Tezaur: Two-level method for solids on unstructured meshes. (to appear).
[14] P. Vaněk, J.  Křížková: Two-level Method on Unstructured Meshes With Convergence Rate Independent of the Coarse-Space Size. University of West Bohemia, Plzeň, preprint no. 70, Jan 1995.
[15] P. Vaněk, J. Mandel, M. Brezina: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56 (1996), 179–196. DOI 10.1007/BF02238511 | MR 1393006
[16] J. Xu: Iterative methods by space decomposition and subspace correction. Siam Review 34, 4 (1992), 581–613. DOI 10.1137/1034116 | MR 1193013 | Zbl 0788.65037
[17] J. Xu: An Introduction to Multilevel Methods. VII. Numerical Analysis Summer School, University of Leicester, UK, to be published by Oxford University Press. MR 1600688
Partner of
EuDML logo