Previous |  Up |  Next

Article

Title: Numerical solutions for second-kind Volterra integral equations by Galerkin methods (English)
Author: Zhang, Shuhua
Author: Lin, Yanping
Author: Rao, Ming
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 1
Year: 2000
Pages: 19-39
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the global convergence for the numerical solutions of nonlinear Volterra integral equations of the second kind by means of Galerkin finite element methods. Global superconvergence properties are discussed by iterated finite element methods and interpolated finite element methods. Local superconvergence and iterative correction schemes are also considered by iterated finite element methods. We improve the corresponding results obtained by collocation methods in the recent papers [6] and [9] by H. Brunner, Q. Lin and N. Yan. Moreover, using an interpolation post-processing technique, we obtain a global superconvergence of the $O(h^{2r})$-convergence rate in the piecewise-polynomial space of degree not exceeding $(r-1)$. As a by-product of our results, all these higher order numerical methods can also provide an a posteriori error estimator, which gives critical and useful information in the code development. (English)
Keyword: Volterra integral equations
Keyword: Galerkin methods
Keyword: convergence and superconvergence
Keyword: interpolation post-processing
Keyword: iterative correction
Keyword: a posteriori error estimators
MSC: 45L05
MSC: 65B05
MSC: 65N30
MSC: 65R20
idZBL: Zbl 1058.65148
idMR: MR1738894
DOI: 10.1023/A:1022284616125
.
Date available: 2009-09-22T18:02:29Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134427
.
Reference: [1] K. Atkinson, J. Flores: The discrete collocation method for nonlinear integral equations.IMA J. Numer. Anal. 13 (1993), 195–213. MR 1210822, 10.1093/imanum/13.2.195
Reference: [2] H. Brunner: Iterated collocation methods and their discretization for Volterra integral equations.SIAM J. Numer. Anal. 21 (1984), 1132–1145. MR 0765511, 10.1137/0721070
Reference: [3] H. Brunner: The approximate solution of Volterra equations with nonsmooth solutions.Utilitas Math. 27 (1985), 57–95. Zbl 0563.65077, MR 0804372
Reference: [4] H. Brunner: A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations.J. Comput. Appl. Math. 8 (1982), 213–229. Zbl 0485.65087, MR 0682889, 10.1016/0771-050X(82)90044-4
Reference: [5] H. Brunner, P. J. Van der Houwen: The Numerical Solution of Volterra Equations. CWI Monographs, Vol. 3.North-Holland, Amsterdam, 1986. MR 0871871
Reference: [6] H. Brunner, Q. Lin, N. Yan: The iterative correction method for Volterra integral equations.BIT 36:2 (1996), 221–228. MR 1432245, 10.1007/BF01731980
Reference: [7] H. Brunner, Y. Lin, S. Zhang: Higher accuracy methods for second-kind Volterra integral equations based on asymptotic expansions of iterated Galerkin methods.J. Integ. Eqs. Appl 10, 4 (1998), 375–396. MR 1669667
Reference: [8] H. Brunner, A. Pedas, G. Vainikko: The piecewise polynomial collocation methods for nonlinear weakly singular Volterra equations.Research Reports A 392, Institute of Mathematics, Helsinki University of Technology, 1997.
Reference: [9] H. Brunner, N. Yan: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations.J. Comput. Appl. Math. 67 (1996), 187–189. MR 1388148, 10.1016/0377-0427(96)00012-X
Reference: [10] Q. Hu: Stieltjes derivatives and $\beta $-polynomial spline collocation for Volterra integro-differential equations with singularities.SIAM J. Numer. Anal. 33, 1 (1996), 208–220. MR 1377251, 10.1137/0733012
Reference: [11] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Essex, 1990. MR 1066462
Reference: [12] Q. Lin, I.H. Sloan, R. Xie: Extrapolation of the iterated-collocation method for integral equations of the second kind.SIAM J. Numer. Anal. 27, 6 (1990), 1535–1541. MR 1080337, 10.1137/0727090
Reference: [13] Q. Lin, S. Zhang: An immediate analysis for global superconvergence for integrodifferential equations.Appl. Math. 1 (1997), 1–21. MR 1426677, 10.1023/A:1022264125558
Reference: [14] Q. Lin, S. Zhang, N. Yan: Methods for improving approximate accuracy for hyperbolic integrodifferential equations.Systems Sci. Math. Sci., 10, 3 (1997), 282–288. MR 1469188
Reference: [15] Q. Lin, S. Zhang, N. Yan: An acceleration method for integral equations by using interpolation post-processing.Advances in Comput. Math. 9 (1998), 117–129. MR 1662762, 10.1023/A:1018925103993
Reference: [16] I. H. Sloan: Superconvergence.Numerical Solution of Integral Equations, M. A. Golberg (ed.), Plenum Press, New York, 1990, pp. 35–70. Zbl 0759.65091, MR 1067150
.

Files

Files Size Format View
AplMat_45-2000-1_3.pdf 391.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo