Previous |  Up |  Next

Article

Title: Numerical solution of the Kiessl model (English)
Author: Dalík, Josef
Author: Daněček, Josef
Author: Vala, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 1
Year: 2000
Pages: 3-17
Summary lang: English
.
Category: math
.
Summary: The Kiessl model of moisture and heat transfer in generally nonhomogeneous porous materials is analyzed. A weak formulation of the problem of propagation of the state parameters of this model, which are so-called moisture potential and temperature, is derived. An application of the method of discretization in time leads to a system of boundary-value problems for coupled pairs of nonlinear second order ODE’s. Some existence and regularity results for these problems are proved and an efficient numerical approach based on a certain special linearization scheme and the Petrov-Galerkin method is suggested. (English)
Keyword: materials with pore structure
Keyword: moisture and heat transport
Keyword: nonlinear systems of partial differential equations
Keyword: method of discretization in time
MSC: 65M60
MSC: 74F10
MSC: 76S05
idZBL: Zbl 1058.65105
idMR: MR1738893
DOI: 10.1023/A:1022232632054
.
Date available: 2009-09-22T18:02:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134426
.
Reference: [1] J. Appel, P. A. Zabrejko: Nonlinear Superposition Operators.Cambridge tracts inmathematics 95, Cambridge University Press, Cambridge, 1990. MR 1066204
Reference: [2] S. Campanato: Sistemi Ellittici in Forma Divergenza. Regolarita all’interno.Quaderni, Pisa, 1980. Zbl 0453.35026, MR 0668196
Reference: [3] J. Dalík: A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems.Appl. Math. 36 (1991), 329–352. MR 1125636
Reference: [4] J. Dalík, J. Daněček, S. Šťastník: The Kiessl model, existence of the classical solution.Sborník konf. Kočovce (1999), to appear.
Reference: [5] J. Dalík, J. Daněček, S. Šťastník: A model of simultaneous distribution of moisture and temperature in porous materials.Ceramics (Silikáty) 41 (2) (1997), 41–46.
Reference: [6] J. Dalík, J. Svoboda, S. Šťastník: Návrh matematického modelu šíření vlhkosti a tepla v pórovitém prostředí.Preprint (1997).
Reference: [7] D. Gawin, P. Baggio, B. A. Schrefler: Modelling heat and moisture transfer in deformable porous building materials.Arch. Civil Eng. XLII, 3 (1996), 325–349.
Reference: [8] M. Giaquinta, G. Modica: Local existence for quasilinear parabolic systems under nonlinear boundary conditions.Ann. Mat. Pura Appl. 149 (1987), 41–59. MR 0932775
Reference: [9] H. Glaser: Graphisches Verfahren zur Untersuchung von Diffusionsvorgängen.Kältetechnik H.10 (1959), 345–349.
Reference: [10] J. Kačur: Solution to strongly nonlinear parabolic problems by a linear approximation scheme.Preprint M2-96, Comenius University Bratislava, Faculty of Mathematics and Physics (1996). MR 1670689
Reference: [11] K. Kiessl: Kapillarer und dampfförmiger Feuchtetransport in mehrschichtlichen Bauteilen.Dissertation, Universität in Essen (1983).
Reference: [12] J. Nečas: Introduction to the theory of nonlinear elliptic equations.Teubner Texte zur Mathematik 52, Teubner Verlag, Leipzig, 1986. MR 0874752
Reference: [13] J. R. Philip, D. A. de Vries: Moisture movements in porous materials under temperature gradients.Am. Geophys. Union 38 (1957), 222–232. 10.1029/TR038i002p00222
.

Files

Files Size Format View
AplMat_45-2000-1_2.pdf 393.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo