Previous |  Up |  Next

Article

Title: A finite element convergence analysis for 3D Stokes equations in case of variational crimes (English)
Author: Knobloch, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 2
Year: 2000
Pages: 99-129
Summary lang: English
.
Category: math
.
Summary: We investigate a finite element discretization of the Stokes equations with nonstandard boundary conditions, defined in a bounded three-dimensional domain with a curved, piecewise smooth boundary. For tetrahedral triangulations of this domain we prove, under general assumptions on the discrete problem and without any additional regularity assumptions on the weak solution, that the discrete solutions converge to the weak solution. Examples of appropriate finite element spaces are given. (English)
Keyword: Stokes equations
Keyword: nonstandard boundary conditions
Keyword: finite element method
Keyword: approximation of boundary
MSC: 35Q30
MSC: 65N30
idZBL: Zbl 1067.65129
idMR: MR1745613
DOI: 10.1023/A:1022235512626
.
Date available: 2009-09-22T18:02:55Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134431
.
Reference: [1] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods.Springer-Verlag, New York, 1991. MR 1115205
Reference: [2] P. G. Ciarlet: Basic error estimates for elliptic problems.In: Handbook of Numerical Analysis, v. II – Finite Element Methods (Part 1), P. G. Ciarlet, J. L. Lions (eds.), North-Holland, Amsterdam, 1991, pp. 17–351. Zbl 0875.65086, MR 1115237
Reference: [3] P. G. Ciarlet, P.-A. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods.In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 409–474. MR 0421108
Reference: [4] G. J. Fix, M. D. Gunzburger and J. S. Peterson: On finite element approximations of problems having inhomogeneous essential boundary conditions.Comput. Math. Appl. 9 (1983), 687–700. MR 0726817
Reference: [5] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations.Springer-Verlag, Berlin, 1986. MR 0851383
Reference: [6] P. Knobloch: Solvability and Finite Element Discretization of a Mathematical Model Related to Czochralski Crystal Growth.PhD Thesis, Preprint MBI-96-5, Otto-von-Guericke-Universität, Magdeburg, 1996. Zbl 0865.65094
Reference: [7] P. Knobloch: Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions.East-West J. Numer. Math. 7 (1999), 133–158. Zbl 0958.76043, MR 1699239
Reference: [8] J. Nečas: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia, Praha, 1967. MR 0227584
Reference: [9] E. M. Stein: Singular Integrals and Differentiability Properties of Functions.Princeton University Press, Princeton, 1970. Zbl 0207.13501, MR 0290095
Reference: [10] G. Strang, G. J. Fix: An Analysis of the Finite Element Method.Prentice-Hall, Englewood Cliffs, New Jersey, 1973. MR 0443377
Reference: [11] A. Ženíšek: How to avoid the use of Green’s theorem in the Ciarlet-Raviart theory of variational crimes.RAIRO, Modelisation Math. Anal. Numer. 21 (1987), 171–191. MR 0882690, 10.1051/m2an/1987210101711
.

Files

Files Size Format View
AplMat_45-2000-2_2.pdf 523.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo