Previous |  Up |  Next

Article

Title: On the domain dependence of solutions to the two-phase Stefan problem (English)
Author: Feireisl, Eduard
Author: Petzeltová, Hana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 2
Year: 2000
Pages: 131-144
Summary lang: English
.
Category: math
.
Summary: We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains $\Omega _n\subset \mathbb{R}^N$ converge to a solution of the same problem on a domain $\Omega $ where $\Omega $ is the limit of $\Omega _n $ in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on $\mathbb{R}^N$. (English)
Keyword: Stefan problem
Keyword: domain dependence
Keyword: Mosco-type covergence of domains
MSC: 35B30
MSC: 35K65
MSC: 35R35
idZBL: Zbl 1067.35155
idMR: MR1745612
DOI: 10.1023/A:1022287529464
.
Date available: 2009-09-22T18:03:01Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134432
.
Reference: [1] D. Blanchard, H. Redwane: Solutions renormalisées d’equations paraboliques à deux non linéarités.C. R. Acad. Sci. Paris, Sér. I, 319 (1994), 831–835. MR 1300952
Reference: [2] L. Boccardo, F. Murat: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations.Nonlinear Analysis 19 (6) (1992), 581–597. MR 1183665, 10.1016/0362-546X(92)90023-8
Reference: [3] D. Bucur, J. P. Zolesio: $N$-dimensional shape optimization under capacity constraints.J. Differential Equations 123 (1995), 544–522. MR 1362884
Reference: [4] M. G. Crandall, H. Ishii and P.-L. Lions: User’s guide to viscosity solutions of second order partial differential equations.Bull. Amer. Math. Soc. 27 (1) (1992), 1–67. MR 1118699, 10.1090/S0273-0979-1992-00266-5
Reference: [5] G. Dal Masso and U. Mosco: Wiener’s criterion and $\Gamma $ convergence.Appl. Math. Optim. 15, 15–63. MR 0866165
Reference: [6] E. N. Dancer: The effect of domain shape on the number of positive solutions of certain nonlinear equations, II.J. Differential Equations 87 (1990), 316–339. Zbl 0729.35050, MR 1072904
Reference: [7] D. Daners: Domain perturbation for linear and nonlinear parabolic equations.J. Differential Equations 129 (2) (1996), 358–402. Zbl 0868.35059, MR 1404388, 10.1006/jdeq.1996.0122
Reference: [8] E. DiBenedetto: Interior and boundary regularity for a class of free boundary problems.In: Free boundary problems: theory and applications, II., A. Fasano, M. Primicerio (eds.), Research Notes in Math., vol. 78, Pitman, Boston, 1983, pp. 383–396. Zbl 0516.35081, MR 0714925
Reference: [9] A. Friedman: Variational Principles and Free-Boundary Problems.John Wiley, New York, 1982. Zbl 0564.49002, MR 0679313
Reference: [10] J. K. Hale and J. Vegas: A nonlinear parabolic equation with varying domain.Arch. Rat. Mech. Anal. 86 (1984), 99–123. MR 0751304, 10.1007/BF00275730
Reference: [11] A. Henrot: Continuity with respect to the domain for the Laplacian: a survey.Control Cybernet. 23 (3) (1994), 427–443. Zbl 0822.35029, MR 1303362
Reference: [12] A. M. Meirmanov: The Stefan Problem.De Gruyter, Berlin, 1992. Zbl 0751.35052, MR 1154310
Reference: [13] O. Pironneau: Optimal Shape Design for Elliptic Systems.Springer-Verlag, Berlin, 1984. Zbl 0534.49001, MR 0725856
Reference: [14] J. Rauch, M. Taylor: Potential and scattering theory on wildly perturbed domains.J. Functional Anal. 18 (1975), 27–59. MR 0377303
Reference: [15] V. Šverák: On optimal shape design.J. Math. Pures Appl. 72 (1993), 537–551. MR 1249408
.

Files

Files Size Format View
AplMat_45-2000-2_3.pdf 383.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo