Title:
|
On the domain dependence of solutions to the two-phase Stefan problem (English) |
Author:
|
Feireisl, Eduard |
Author:
|
Petzeltová, Hana |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
45 |
Issue:
|
2 |
Year:
|
2000 |
Pages:
|
131-144 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains $\Omega _n\subset \mathbb{R}^N$ converge to a solution of the same problem on a domain $\Omega $ where $\Omega $ is the limit of $\Omega _n $ in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on $\mathbb{R}^N$. (English) |
Keyword:
|
Stefan problem |
Keyword:
|
domain dependence |
Keyword:
|
Mosco-type covergence of domains |
MSC:
|
35B30 |
MSC:
|
35K65 |
MSC:
|
35R35 |
idZBL:
|
Zbl 1067.35155 |
idMR:
|
MR1745612 |
DOI:
|
10.1023/A:1022287529464 |
. |
Date available:
|
2009-09-22T18:03:01Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134432 |
. |
Reference:
|
[1] D. Blanchard, H. Redwane: Solutions renormalisées d’equations paraboliques à deux non linéarités.C. R. Acad. Sci. Paris, Sér. I, 319 (1994), 831–835. MR 1300952 |
Reference:
|
[2] L. Boccardo, F. Murat: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations.Nonlinear Analysis 19 (6) (1992), 581–597. MR 1183665, 10.1016/0362-546X(92)90023-8 |
Reference:
|
[3] D. Bucur, J. P. Zolesio: $N$-dimensional shape optimization under capacity constraints.J. Differential Equations 123 (1995), 544–522. MR 1362884 |
Reference:
|
[4] M. G. Crandall, H. Ishii and P.-L. Lions: User’s guide to viscosity solutions of second order partial differential equations.Bull. Amer. Math. Soc. 27 (1) (1992), 1–67. MR 1118699, 10.1090/S0273-0979-1992-00266-5 |
Reference:
|
[5] G. Dal Masso and U. Mosco: Wiener’s criterion and $\Gamma $ convergence.Appl. Math. Optim. 15, 15–63. MR 0866165 |
Reference:
|
[6] E. N. Dancer: The effect of domain shape on the number of positive solutions of certain nonlinear equations, II.J. Differential Equations 87 (1990), 316–339. Zbl 0729.35050, MR 1072904 |
Reference:
|
[7] D. Daners: Domain perturbation for linear and nonlinear parabolic equations.J. Differential Equations 129 (2) (1996), 358–402. Zbl 0868.35059, MR 1404388, 10.1006/jdeq.1996.0122 |
Reference:
|
[8] E. DiBenedetto: Interior and boundary regularity for a class of free boundary problems.In: Free boundary problems: theory and applications, II., A. Fasano, M. Primicerio (eds.), Research Notes in Math., vol. 78, Pitman, Boston, 1983, pp. 383–396. Zbl 0516.35081, MR 0714925 |
Reference:
|
[9] A. Friedman: Variational Principles and Free-Boundary Problems.John Wiley, New York, 1982. Zbl 0564.49002, MR 0679313 |
Reference:
|
[10] J. K. Hale and J. Vegas: A nonlinear parabolic equation with varying domain.Arch. Rat. Mech. Anal. 86 (1984), 99–123. MR 0751304, 10.1007/BF00275730 |
Reference:
|
[11] A. Henrot: Continuity with respect to the domain for the Laplacian: a survey.Control Cybernet. 23 (3) (1994), 427–443. Zbl 0822.35029, MR 1303362 |
Reference:
|
[12] A. M. Meirmanov: The Stefan Problem.De Gruyter, Berlin, 1992. Zbl 0751.35052, MR 1154310 |
Reference:
|
[13] O. Pironneau: Optimal Shape Design for Elliptic Systems.Springer-Verlag, Berlin, 1984. Zbl 0534.49001, MR 0725856 |
Reference:
|
[14] J. Rauch, M. Taylor: Potential and scattering theory on wildly perturbed domains.J. Functional Anal. 18 (1975), 27–59. MR 0377303 |
Reference:
|
[15] V. Šverák: On optimal shape design.J. Math. Pures Appl. 72 (1993), 537–551. MR 1249408 |
. |