Previous |  Up |  Next


differential-algebraic problem; monotone sequences; quadratic convergence
The method of quasilinearization is a procedure for obtaining approximate solutions of differential equations. In this paper, this technique is applied to a differential-algebraic problem. Under some natural assumptions, monotone sequences converge quadratically to a unique solution of our problem.
[1] J. Bahi, E. Griepentrog and J. C. Miellou: Parallel treatment of a class of differential-algebraic systems. SIAM J.  Numer. Anal. 33 (1996), 1969–1980. DOI 10.1137/S0036142993258105 | MR 1411858
[2] R. Bellman, R. Kalaba: Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York, 1965. MR 0178571
[3] Z. Jackiewicz, M. Kwapisz: Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J.  Numer. Anal. 33 (1996), 2303–2317. DOI 10.1137/S0036142992233098 | MR 1427465
[4] T. Jankowski, V. Lakshmikantham: Monotone iterations for differential eguations with a parameter. J. Appl. Math. Stoch. Anal. 10 (1997), 273–278. DOI 10.1155/S1048953397000348 | MR 1468122
[5] T. Jankowski, M. Kwapisz: Convergence of numerical methods for systems of neutral functional-differential-algebraic eguations. Appl. Math. 40 (1995), 457–472. MR 1353973
[6] M. Kwapisz: On solving systems of differential algebraic eguations. Appl. Math. 37 (1992), 257–264. MR 1180604
[7] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985. MR 0855240
Partner of
EuDML logo