Previous |  Up |  Next

Article

Title: Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations (English)
Author: Zhang, Shuhua
Author: Lin, Tao
Author: Lin, Yanping
Author: Rao, Ming
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 4
Year: 2000
Pages: 241-263
Summary lang: English
.
Category: math
.
Summary: We present two defect correction schemes to accelerate the Petrov-Galerkin finite element methods [19] for nonlinear Volterra integro-differential equations. Using asymptotic expansions of the errors, we show that the defect correction schemes can yield higher order approximations to either the exact solution or its derivative. One of these schemes even does not impose any extra regularity requirement on the exact solution. As by-products, all of these higher order numerical methods can also be used to forma posteriori error estimators for accessing actual errors of the Petrov-Galerkin finite element solutions. Numerical examples are also provided to illustrate the theoretical results obtained in this paper. (English)
Keyword: Volterra integro-differential equations
Keyword: Petrov-Galerkin methods
Keyword: asymptotic expansions
Keyword: defect correction
Keyword: a posteriori error estimators
MSC: 45L05
MSC: 65B05
MSC: 65L60
MSC: 65N30
MSC: 65R20
idZBL: Zbl 1058.65147
idMR: MR1763171
DOI: 10.1023/A:1022333811602
.
Date available: 2009-09-22T18:03:47Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134438
.
Reference: [1] H. Brunner: A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations.J. Comput. Appl. Math. 8 (1982), 213–229. Zbl 0485.65087, MR 0682889
Reference: [2] H. Brunner: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels.SIAM J. Numer. Anal. 20 (1983), 1106–1119. Zbl 0533.65087, MR 0723827, 10.1137/0720080
Reference: [3] H. Brunner: Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations.Math. Comp. 42, 165 (1984), 95–109. Zbl 0543.65092, MR 0725986
Reference: [4] H. Brunner: Polynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernels.IMA J. Numer. Anal. 6 (1986), 221–239. Zbl 0634.65142, MR 0967664, 10.1093/imanum/6.2.221
Reference: [5] H. Brunner: The numerical treatment of Volterra integro-differential equations with unbounded delay.J. Comput. Appl. Math. 28 (1989), 5–23. Zbl 0687.65131, MR 1038829
Reference: [6] H. Brunner, P. J. van der Houwen: The Numerical Solution of Volterra Equations.CWI Monographs, Vol. 3, North-Holland, Amsterdam, 1986. MR 0871871
Reference: [7] H. Brunner, J.-P. Kauthen and A. Ostermann: Runge-Kutta time discretizations of parabolic Volterra integro-differential equations.J. Integral Equations Appl. 7 (1995), 1–16. MR 1339686, 10.1216/jiea/1181075847
Reference: [8] H. Brunner, Y. Lin and S. Zhang: Higher accuracy methods for second-kind Volterra integral equations based on asymptotic expansions of iterated Galerkin methods.J. Integral Equations Appl. 10 (1998), 375–396. MR 1669667, 10.1216/jiea/1181074245
Reference: [9] H. Brunner, A. Makroglou and R. K. Miller: Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution.Appl. Numer. Math. 23 (1997), 381–402. MR 1453423, 10.1016/S0168-9274(96)00075-X
Reference: [10] J. Cannon, Y. Lin: A priori $L^2$ error estimates for finite element methods for nonlinear diffusion equations with memory.SIAM J. Numer. Anal. 27 (1990), 595–607. MR 1041253, 10.1137/0727036
Reference: [11] Q. Hu: Stieltjes derivatives and $\beta $-polynomial spline collocation for Volterra integro-differential equations with singularities.SIAM J. Numer. Anal. 33 (1996), 208–220. MR 1377251, 10.1137/0733012
Reference: [12] J. P. Kauthen: The method of lines for parabolic partial integro-differential equations.J. Integral Equations Appl. 4 (1992), 69–81. Zbl 0763.65101, MR 1160088, 10.1216/jiea/1181075666
Reference: [13] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Essex, 1990. MR 1066462
Reference: [14] M. Křížek, P. Neittaanmäki: Bibliography on Superconvergence.In: Finite Element Methods: Superconvergence, Post-Processing, and A Posteriori Estimates (edited by M. Křížek, P. Neittaanmäki and R. Stenberg), Lecture Notes in Pure and Applied Mathematics, vol. 196. Marcel Dekker, New York, 1998, pp. 315–348. MR 1602809
Reference: [15] Q. Lin, N. Yan: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers, 1996.
Reference: [16] Q. Lin, S. Zhang: An immediate analysis for global superconvergence for integro-differential equations.Appl. Math. 42 (1997), 1–21. MR 1426677, 10.1023/A:1022264125558
Reference: [17] Q. Lin, S. Zhang and N. Yan: Methods for improving approximate accuracy for hyperbolic integro-differential equations.Systems Sci. Math. Sci. 10 (1997), 282–288. MR 1469188
Reference: [18] Q. Lin, S. Zhang and N. Yan: An acceleration method for integral equations by using interpolation post-processing.Adv. in Comput. Math. 9 (1998), 117–128. MR 1662762, 10.1023/A:1018925103993
Reference: [19] T. Lin, Y. Lin, M. Rao and S. Zhang: Petrov-Galerkin methods for nonlinear Volterra integro-differential equations.Submitted to J. Math. Anal. Appl.
Reference: [20] R. K. Miller: An integro-differential equation for rigid heat conductions with memory.J. Math. Anal. Appl. 66 (1978), 313–332. MR 0515894, 10.1016/0022-247X(78)90234-2
Reference: [21] J. Prüss: Evolutionary Integral Equations and Applications.Birkhauser Verlag, Basel, 1993. MR 1238939
Reference: [22] T. Tang: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations.Numer. Math. 61 (1992), 373–382. Zbl 0741.65110, MR 1151776, 10.1007/BF01385515
Reference: [23] T. Tang: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels.IMA J. Numer. Anal. 13 (1993), 93–99. Zbl 0765.65126, MR 1199031, 10.1093/imanum/13.1.93
.

Files

Files Size Format View
AplMat_45-2000-4_1.pdf 413.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo