Title:
|
Crack in a solid under Coulomb friction law (English) |
Author:
|
Kovtunenko, Victor A. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
45 |
Issue:
|
4 |
Year:
|
2000 |
Pages:
|
265-290 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An equilibrium problem for a solid with a crack is considered. We assume that both the Coulomb friction law and a nonpenetration condition hold at the crack faces. The problem is formulated as a quasi-variational inequality. Existence of a solution is proved, and a complete system of boundary conditions fulfilled at the crack surface is obtained in suitable spaces. (English) |
Keyword:
|
variational and quasi-variational inequalities |
Keyword:
|
crack |
Keyword:
|
Coulomb friction |
MSC:
|
35J85 |
MSC:
|
35Q72 |
MSC:
|
73T05 |
MSC:
|
74M10 |
MSC:
|
74M15 |
idZBL:
|
Zbl 1058.74064 |
idMR:
|
MR1763172 |
DOI:
|
10.1023/A:1022319428441 |
. |
Date available:
|
2009-09-22T18:03:53Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134439 |
. |
Reference:
|
[1] V. V. Alekhin, B. D. Annin and S. N. Korobeinikov: Accounting of a friction in contact elastoplastic problems.In: Fund. Prob. Mat. Mekh. 2, Novosibirsk Univ., 1996. (Russian) |
Reference:
|
[2] C. Baiocchi, A. Capelo: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems.Wiley, Chichester, 1984. MR 0745619 |
Reference:
|
[3] G. P. Cherepanov: On some mechanism of the development of cracks in the Earth solid shell.Izvestiya USSR Acad. Sci., Physics of the Earth 9 (1984), 3–12. (Russian) |
Reference:
|
[4] R. Duduchava, W. Wendland: The Wiener-Hopf method for system of pseudodifferential equations with applications to crack problems.Integral Equations Operator Theory 23 (1995), 294–335. MR 1356337, 10.1007/BF01198487 |
Reference:
|
[5] G. Duvaut, J.-L. Lions: Les Inéquations en Mécanique et en Physique.Dunod, Paris, 1972. MR 0464857 |
Reference:
|
[6] C. Eck, J. Jarušek: Existence results for the static contact problems with Coulomb friction.Math. Models Methods Appl. Sci. 8 (3) (1998), 445–468. MR 1624879, 10.1142/S0218202598000196 |
Reference:
|
[7] P. Grisvard: Singularities in Boundary Value Problems.Masson, Paris & Springer-Verlag, Berlin, 1992. Zbl 0778.93007, MR 1173209 |
Reference:
|
[8] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek: Solution of Variational Inequalities in Mechanics.Springer-Verlag, New York, 1988. MR 0952855 |
Reference:
|
[9] J. Jarušek: Contact problems with bounded friction, coercive case.Czechoslovak Math. J. 33 (108) (1983), 237–261. MR 0699024 |
Reference:
|
[10] A. M. Khludnev, J. Sokolowski: Modelling and Control in Solid Mechanics.Birkhäuser, Basel-Boston-Berlin, 1997. MR 1433133 |
Reference:
|
[11] V. A. Kovtunenko: Analytical solution of a variational inequality for a cutted bar.Control Cybernet. 25 (1996), 801–808. Zbl 0863.73077, MR 1420072 |
Reference:
|
[12] V. A. Kovtunenko: Iterative penalty method for plate with a crack.Adv. Math. Sci. Appl. 7 (1997), 667–674. Zbl 0896.73079, MR 1476271 |
Reference:
|
[13] V. A. Kovtunenko: A variational and a boundary problems with friction on the interior boundary.Siberian Math. J. 39 (1998), 1060–1073. MR 1650748 |
Reference:
|
[14] A. S. Kravchuk: Variational and Quasivariational Inequalities in Mechanics.MGAPI, Moscow, 1997. (Russian) |
Reference:
|
[15] J.-L. Lions, E. Magenes: Problémes aux Limites non Homogénes et Applications 1.Dunod, Paris, 1968. |
Reference:
|
[16] V. G. Maz’ya: Spaces of S. L. Sobolev.Leningrad Univ., 1985. (Russian) MR 0807364 |
Reference:
|
[17] N. F. Morozov: Mathematical Foundations of the Crack Theory.Nauka, Moscow, 1984. (Russian) MR 0787610 |
Reference:
|
[18] S. A. Nazarov, B. A. Plamenevskiĭ: Elliptic Problems in Domains with Piecewise Smooth Boundaries.Nauka, Moscow, 1991. (Russian) |
Reference:
|
[19] J. Nečas, J. Jarušek and J. Haslinger: On the solution of the variational inequality to the Signorini problem with small friction.Boll. Um. Mat. Ital. 17-B (1980), 796–811. MR 0580559 |
Reference:
|
[20] J. J. Telega, T. Lewinski: Mathematical aspects of modelling the macroscopic behaviour of cross-ply laminates with intralaminar cracks.Control Cybernet. 23 (1994), 773–792. MR 1303383 |
Reference:
|
[21] E. Zeidler: Nonlinear Functional Analysis and its Applications. 1. Fixed-Point Theorems.Springer-Verlag, New York, 1986. MR 0816732 |
. |