Title:
|
Two mappings related to semi-inner products and their applications in geometry of normed linear spaces (English) |
Author:
|
Dragomir, S. S. |
Author:
|
Koliha, J. J. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
45 |
Issue:
|
5 |
Year:
|
2000 |
Pages:
|
337-355 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we introduce two mappings associated with the lower and upper semi-inner product $(\cdot ,\cdot )_i$ and $(\cdot ,\cdot )_s$ and with semi-inner products $[\cdot ,\cdot ]$ (in the sense of Lumer) which generate the norm of a real normed linear space, and study properties of monotonicity and boundedness of these mappings. We give a refinement of the Schwarz inequality, applications to the Birkhoff orthogonality, to smoothness of normed linear spaces as well as to the characterization of best approximants. (English) |
Keyword:
|
lower and upper semi-inner product |
Keyword:
|
semi-inner products |
Keyword:
|
Schwarz inequality |
Keyword:
|
smooth normed spaces |
Keyword:
|
Birkhoff orthogonality |
Keyword:
|
best approximants |
MSC:
|
41A50 |
MSC:
|
46B20 |
MSC:
|
46B99 |
MSC:
|
46C50 |
MSC:
|
46C99 |
idZBL:
|
Zbl 0996.46007 |
idMR:
|
MR1777019 |
DOI:
|
10.1023/A:1022268627299 |
. |
Date available:
|
2009-09-22T18:04:25Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134444 |
. |
Reference:
|
[1] D. Amir: Characterizations of Inner Product Spaces.Birkhäuser, Basel, 1986. Zbl 0617.46030, MR 0897527 |
Reference:
|
[2] K. Deimling: Nonlinear Functional Analysis.Springer, Berlin, 1985. Zbl 0559.47040, MR 0787404 |
Reference:
|
[3] S. S. Dragomir: A characterization of the elements of best approximation in real normed spaces.Studia Univ. Babeş-Bolyai Math. 33 (1988), 74–80. MR 1027362 |
Reference:
|
[4] S. S. Dragomir: On best approximation in the sense of Lumer and applications.Riv. Mat. Univ. Parma 15 (1989), 253–263. Zbl 0718.41037, MR 1064263 |
Reference:
|
[5] S. S. Dragomir: On continuous sublinear functionals in reflexive Banach spaces and applications.Riv. Mat. Univ. Parma 16 (1990), 239–250. Zbl 0736.46007, MR 1105746 |
Reference:
|
[6] S. S. Dragomir: Characterizations of proximinal, semičebyševian and čebyševian subspaces in real normed spaces.Numer. Funct. Anal. Optim. 12 (1991), 487–492. MR 1159922, 10.1080/01630569108816444 |
Reference:
|
[7] S. S. Dragomir: Approximation of continuous linear functionals in real normed spaces.Rend. Mat. Appl. 12 (1992), 357–364. Zbl 0787.46012, MR 1185896 |
Reference:
|
[8] S. S. Dragomir: Continuous linear functionals and norm derivatives in real normed spaces.Univ. Beograd. Publ. Elektrotehn. Fak. 3 (1992), 5–12. Zbl 0787.46011, MR 1218612 |
Reference:
|
[9] S. S. Dragomir, J. J. Koliha: The mapping $\gamma _{x,y}$ in normed linear spaces and applications.J. Math. Anal. Appl. 210 (1997), 549–563. MR 1453191, 10.1006/jmaa.1997.5413 |
Reference:
|
[10] S. S. Dragomir, J. J. Koliha: Mappings $\Phi ^p$ in normed linear spaces and new characterizations of Birkhoff orthogonality, smoothness and best approximants.Soochow J. Math. 23 (1997), 227–239. MR 1452846 |
Reference:
|
[11] S. S. Dragomir, J. J. Koliha: The mapping $v_{x,y}$ in normed linear spaces with applications to inequality in analysis.J. Ineq. Appl. 2 (1998), 37–55. MR 1671658 |
Reference:
|
[12] J. R. Giles: Classes of semi-inner-product spaces.Trans. Amer. Math. Soc. 129 (1967), 436–446. Zbl 0157.20103, MR 0217574, 10.1090/S0002-9947-1967-0217574-1 |
Reference:
|
[13] V. I. Istrǎţescu: Inner Product Structures.D. Reidel, Dordrecht, 1987. MR 0903846 |
Reference:
|
[14] G. Lumer: Semi-inner-product spaces.Trans. Amer. Math. Soc. 100 (1961), 29–43. Zbl 0102.32701, MR 0133024, 10.1090/S0002-9947-1961-0133024-2 |
Reference:
|
[15] I. Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces.Die Grundlehren der math. Wissen. 171, Springer, Berlin, 1970. Zbl 0197.38601, MR 0270044 |
Reference:
|
[16] I. Singer: The Theory of Best Approximation and Functional Analysis.CBMS-NSF Regional Series in Appl. Math. 13, SIAM, Philadelphia, 1974. Zbl 0291.41020, MR 0374771 |
Reference:
|
[17] S. S. Dragomir, J. J. Koliha: The mapping $\Psi ^p_{x,y}$ in normed linear spaces and its applications in the theory of inequalities.Math. Ineq. Appl. 2 (1999), 367–381. MR 1698381 |
. |