Previous |  Up |  Next

Article

Title: Two mappings related to semi-inner products and their applications in geometry of normed linear spaces (English)
Author: Dragomir, S. S.
Author: Koliha, J. J.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 5
Year: 2000
Pages: 337-355
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce two mappings associated with the lower and upper semi-inner product $(\cdot ,\cdot )_i$ and $(\cdot ,\cdot )_s$ and with semi-inner products $[\cdot ,\cdot ]$ (in the sense of Lumer) which generate the norm of a real normed linear space, and study properties of monotonicity and boundedness of these mappings. We give a refinement of the Schwarz inequality, applications to the Birkhoff orthogonality, to smoothness of normed linear spaces as well as to the characterization of best approximants. (English)
Keyword: lower and upper semi-inner product
Keyword: semi-inner products
Keyword: Schwarz inequality
Keyword: smooth normed spaces
Keyword: Birkhoff orthogonality
Keyword: best approximants
MSC: 41A50
MSC: 46B20
MSC: 46B99
MSC: 46C50
MSC: 46C99
idZBL: Zbl 0996.46007
idMR: MR1777019
DOI: 10.1023/A:1022268627299
.
Date available: 2009-09-22T18:04:25Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134444
.
Reference: [1] D. Amir: Characterizations of Inner Product Spaces.Birkhäuser, Basel, 1986. Zbl 0617.46030, MR 0897527
Reference: [2] K. Deimling: Nonlinear Functional Analysis.Springer, Berlin, 1985. Zbl 0559.47040, MR 0787404
Reference: [3] S. S. Dragomir: A characterization of the elements of best approximation in real normed spaces.Studia Univ. Babeş-Bolyai Math. 33 (1988), 74–80. MR 1027362
Reference: [4] S. S. Dragomir: On best approximation in the sense of Lumer and applications.Riv. Mat. Univ. Parma 15 (1989), 253–263. Zbl 0718.41037, MR 1064263
Reference: [5] S. S. Dragomir: On continuous sublinear functionals in reflexive Banach spaces and applications.Riv. Mat. Univ. Parma 16 (1990), 239–250. Zbl 0736.46007, MR 1105746
Reference: [6] S. S. Dragomir: Characterizations of proximinal, semičebyševian and čebyševian subspaces in real normed spaces.Numer. Funct. Anal. Optim. 12 (1991), 487–492. MR 1159922, 10.1080/01630569108816444
Reference: [7] S. S. Dragomir: Approximation of continuous linear functionals in real normed spaces.Rend. Mat. Appl. 12 (1992), 357–364. Zbl 0787.46012, MR 1185896
Reference: [8] S. S. Dragomir: Continuous linear functionals and norm derivatives in real normed spaces.Univ. Beograd. Publ. Elektrotehn. Fak. 3 (1992), 5–12. Zbl 0787.46011, MR 1218612
Reference: [9] S. S. Dragomir, J. J. Koliha: The mapping $\gamma _{x,y}$ in normed linear spaces and applications.J. Math. Anal. Appl. 210 (1997), 549–563. MR 1453191, 10.1006/jmaa.1997.5413
Reference: [10] S. S. Dragomir, J. J. Koliha: Mappings $\Phi ^p$ in normed linear spaces and new characterizations of Birkhoff orthogonality, smoothness and best approximants.Soochow J. Math. 23 (1997), 227–239. MR 1452846
Reference: [11] S. S. Dragomir, J. J. Koliha: The mapping $v_{x,y}$ in normed linear spaces with applications to inequality in analysis.J. Ineq. Appl. 2 (1998), 37–55. MR 1671658
Reference: [12] J. R. Giles: Classes of semi-inner-product spaces.Trans. Amer. Math. Soc. 129 (1967), 436–446. Zbl 0157.20103, MR 0217574, 10.1090/S0002-9947-1967-0217574-1
Reference: [13] V. I. Istrǎţescu: Inner Product Structures.D. Reidel, Dordrecht, 1987. MR 0903846
Reference: [14] G. Lumer: Semi-inner-product spaces.Trans. Amer. Math. Soc. 100 (1961), 29–43. Zbl 0102.32701, MR 0133024, 10.1090/S0002-9947-1961-0133024-2
Reference: [15] I. Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces.Die Grundlehren der math. Wissen. 171, Springer, Berlin, 1970. Zbl 0197.38601, MR 0270044
Reference: [16] I. Singer: The Theory of Best Approximation and Functional Analysis.CBMS-NSF Regional Series in Appl. Math. 13, SIAM, Philadelphia, 1974. Zbl 0291.41020, MR 0374771
Reference: [17] S. S. Dragomir, J. J. Koliha: The mapping $\Psi ^p_{x,y}$ in normed linear spaces and its applications in the theory of inequalities.Math. Ineq. Appl. 2 (1999), 367–381. MR 1698381
.

Files

Files Size Format View
AplMat_45-2000-5_2.pdf 375.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo