Previous |  Up |  Next

Article

Title: Resonance in Preisach systems (English)
Author: Krejčí, Pavel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 6
Year: 2000
Pages: 439-468
Summary lang: English
.
Category: math
.
Summary: This paper deals with the asymptotic behavior as $t\rightarrow \infty $ of solutions $u$ to the forced Preisach oscillator equation $\ddot{w}(t) + u(t) = \psi (t)$, $w = u + {\mathcal P}[u]$, where $\mathcal P$ is a Preisach hysteresis operator, $\psi \in L^\infty (0,\infty )$ is a given function and $t\ge 0$ is the time variable. We establish an explicit asymptotic relation between the Preisach measure and the function $\psi $ (or, in a more physical terminology, a balance condition between the hysteresis dissipation and the external forcing) which guarantees that every solution remains bounded for all times. Examples show that this condition is qualitatively optimal. Moreover, if the Preisach measure does not identically vanish in any neighbourhood of the origin in the Preisach half-plane and $\lim _{t\rightarrow \infty } \psi (t) = 0$, then every bounded solution also asymptotically vanishes as $t\rightarrow \infty $. (English)
Keyword: Preisach model
Keyword: hysteresis
Keyword: forced oscillations
Keyword: asymptotic behavior
MSC: 34C10
MSC: 34C11
MSC: 34C55
MSC: 34D40
MSC: 47H30
MSC: 82D40
idZBL: Zbl 1010.34038
idMR: MR1800964
DOI: 10.1023/A:1022333500777
.
Date available: 2009-09-22T18:05:08Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134451
.
Reference: [1] P.-A. Bliman: Etude Mathématique d’un Modèle de Frottement sec: Le Modèle de P. R.  Dahl. Thesis.Université de Paris IX (Paris-Dauphine), Paris and INRIA, Rocquencourt, 1990. MR 1289413
Reference: [2] P.-A.  Bliman, A. M.  Krasnosel’skiĭ, M.  Sorine and A. A.  Vladimirov: Nonlinear resonance in systems with hysteresis.Nonlinear Anal. 27 (1996), 561–577. MR 1396029, 10.1016/0362-546X(96)00032-6
Reference: [3] M. Brokate: Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysterese-Typ.Peter Lang, Frankfurt am Main, 1987. (German) MR 1031251
Reference: [4] M. Brokate, K. Dreßler and P.  Krejčí: Rainflow counting and energy dissipation for hysteresis models in elastoplasticity.Euro. J.  Mech. A/Solids 15 (1996), 705–735. MR 1412202
Reference: [5] M.  Brokate, A. V. Pokrovskiĭ: Asymptotically stable oscillations in systems with hysteresis nonlinearities.J. Differential Equations 150 (1998), 98–123. MR 1660262, 10.1006/jdeq.1998.3492
Reference: [6] M.  Brokate, J.  Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci., Vol. 121.Springer-Verlag, New York, 1996. MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [7] M.  Brokate, A.  Visintin: Properties of the Preisach model for hysteresis.J.  Reine Angew. Math. 402 (1989), 1–40. MR 1022792
Reference: [8] V. V. Chernorutskiĭ, D. I. Rachinskiĭ: On uniqueness of an initial-value problem for ODE with hysteresis.NoDEA 4 (1997), 391–399. MR 1458534, 10.1007/s000300050021
Reference: [9] M. A. Krasnosel’skiĭ, I. D. Mayergoyz, A. V. Pokrovskiĭ and D. I. Rachinskiĭ: Operators of hysteresis nonlinearity generated by continuous relay systems.Avtomat. i Telemekh. (1994), 49–60. (Russian) MR 1295891
Reference: [10] M. A. Krasnosel’skiĭ, A. V. Pokrovskiĭ: Systems with Hysteresis.English edition Springer 1989, Nauka, Moscow, 1983. (Russian) MR 0742931
Reference: [11] P.  Krejčí: On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case.Apl. Mat. 34 (1989), 364–374. MR 1014077
Reference: [12] P.  Krejčí: Global behaviour of solutions to the wave equation with hysteresis.Adv. Math. Sci. Appl. 2 (1993), 1–23.
Reference: [13] P.  Krejčí: Forced oscillations in Preisach systems.Physica B 275 (2000), 81–86. 10.1016/S0921-4526(99)00713-9
Reference: [14] P.  Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int. Ser. Math. Sci. Appl., Vol 8.Gakkōtosho, Tokyo, 1996. MR 2466538
Reference: [15] I. D.  Mayergoyz: Mathematical Models for Hysteresis.Springer-Verlag, New York, 1991. MR 1083150
Reference: [16] F.  Preisach: Über die magnetische Nachwirkung.Z. Phys. 94 (1935), 277–302. (German)
Reference: [17] A.  Visintin: On the Preisach model for hysteresis.Nonlinear Anal. 9 (1984), 977–996. Zbl 0563.35007, MR 0760191, 10.1016/0362-546X(84)90094-4
Reference: [18] A.  Visintin: Differential Models of Hysteresis.Springer, Berlin-Heidelberg, 1994. Zbl 0820.35004, MR 1329094
.

Files

Files Size Format View
AplMat_45-2000-6_4.pdf 494.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo