Previous |  Up |  Next

Article

Title: Semiregular finite elements in solving some nonlinear problems (English)
Author: Zlámalová, Jana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 1
Year: 2001
Pages: 53-77
Summary lang: English
.
Category: math
.
Summary: In this paper, under the maximum angle condition, the finite element method is analyzed for nonlinear elliptic variational problem formulated in [4]. In [4] the analysis was done under the minimum angle condition. (English)
Keyword: finite element method
Keyword: nonlinear elliptic problems
Keyword: semiregular elements
Keyword: maximum angle condition
Keyword: effect of numerical integration
Keyword: approximation of the boundary
MSC: 35J65
MSC: 65N12
MSC: 65N30
idZBL: Zbl 1066.65133
idMR: MR1808429
DOI: 10.1023/A:1013779621231
.
Date available: 2009-09-22T18:05:48Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134457
.
Reference: [1] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland Publishing Company, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [2] M. Feistauer, K. Najzar: Finite element approximation of a problem with a nonlinear Newton boundary condition.Numer. Math. 78 (1998), 403–425. MR 1603350, 10.1007/s002110050318
Reference: [3] M. Feistauer, V. Sobotíková: Finite element approximation of nonlinear elliptic problems with discontinuous coefficients.RAIRO Modél. Math. Anal. Numér. 24 (1990), 457–500. MR 1070966, 10.1051/m2an/1990240404571
Reference: [4] M. Feistauer, A. Ženíšek: Finite element solution of nonlinear elliptic problems.Numer. Math. 50 (1987), 451–475. MR 0875168
Reference: [5] M. Křížek: On semiregular families of triangulations and linear interpolation.Appl. Math. 36 (1991), 223–232. MR 1109126
Reference: [6] A. Kufner, O. John and S.  Fučík : Function Spaces.Academia, Praha, 1977. MR 0482102
Reference: [7] J. Nečas: Les Métodes Directes en Théorie des Equations Elliptiques.Academia-Masson, Prague-Paris, 1967. MR 0227584
Reference: [8] L. A. Oganesian, L. A Rukhovec: Variational-Difference Methods for the Solution of Elliptic Problems.Izd. Akad. Nauk ArSSR, Jerevan, 1979. (Russian)
Reference: [9] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Academic Press, London, 1990. MR 1086876
Reference: [10] A. Ženíšek: The maximum angle condition in the finite element method for monotone problems with applications in magnetostatics.Numer. Math. 71 (1995), 399–417. MR 1347576, 10.1007/s002110050151
Reference: [11] A. Ženíšek: Finite element variational crimes in the case of semiregular elements.Appl. Math. 41 (1996), 367–398. MR 1404547
Reference: [12] A. Ženíšek: The use of semiregular finite elements.In: Proceedings of EQUADIFF, Conference on Differential Equations and Their Applications (R. P.  Agarwal, F.  Neuman and J.  Vosmanský, eds.), Masaryk University, Brno & Electronic Publishing House, Stony Brook, New York, 1998, pp. 201–251.
Reference: [13] M. Zlámal: Curved elements in the finite element method  I .SIAM J.  Numer. Anal. 10 (1973), 229–240. MR 0395263, 10.1137/0710022
.

Files

Files Size Format View
AplMat_46-2001-1_4.pdf 414.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo