Title:
|
Homogenization of the Maxwell equations: Case I. Linear theory (English) |
Author:
|
Wellander, Niklas |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
46 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
29-51 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved. (English) |
Keyword:
|
Maxwell’s equations |
Keyword:
|
homogenization |
Keyword:
|
two-scale convergence |
Keyword:
|
corrector results |
Keyword:
|
heterogeneous materials |
Keyword:
|
periodic coefficients |
Keyword:
|
nonperiodic coefficients |
Keyword:
|
compactness result |
Keyword:
|
effective properties |
Keyword:
|
fiber composites |
MSC:
|
35B27 |
MSC:
|
35Q60 |
MSC:
|
74Q10 |
MSC:
|
78A25 |
MSC:
|
78A48 |
MSC:
|
78M40 |
idZBL:
|
Zbl 1058.78004 |
idMR:
|
MR1808428 |
DOI:
|
10.1023/A:1013727504393 |
. |
Date available:
|
2009-09-22T18:05:42Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133893 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/133894 |
. |
Reference:
|
[1] G. Allaire: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482–2518. Zbl 0770.35005, MR 1185639, 10.1137/0523084 |
Reference:
|
[2] M. Artola: Homogenization and electromagnetic wave propagation in composite media with high conductivity inclusions.In: Proceedings of the Second Workshop Composite Media and Homogenization Theory, G. Dal Maso and G. Dell’Antonio (eds.), World Scientific Publishing Company, Singapore-New York-London, 1995. |
Reference:
|
[3] M. Artola, M. Cessenat: Un probléme raide avec homogénéisation en électromagnétisme.C. R. Acad. Sci. Paris, Sér. I Math. 310 (1990), 9–14. MR 1044404 |
Reference:
|
[4] M. Artola, M. Cessenat: Diffraction d’une onde électromagnetique par un obstacle borné à permittivité et perméabilité élevées.C. R. Acad. Sci. Paris, Sér. I Math. 314 (1992), 349–354. MR 1153713 |
Reference:
|
[5] A. Bensoussan, J. L. Lions, G. Papanicolaou: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications.North-Holland Publishing Company, Amsterdam-New York-Oxford, 1978. MR 0503330 |
Reference:
|
[6] M. Cessenat: Mathematical Methods in Electromagnetism. Linear Theory and Applications. Series on Advances in Mathematics for Applied Sciences, Vol 41.World Scientific Publishing Company, Singapore-New York-London, 1996. MR 1409140 |
Reference:
|
[7] G. Duvaut, J. L. Lions: Inequalities in Mechanics and Physics.Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0521262 |
Reference:
|
[8] A. Holmbom: Homogenization of parabolic equations: an alternative approach and some corrector-type results.Appl. Math. 42 (1997), 321–343. Zbl 0898.35008, MR 1467553, 10.1023/A:1023049608047 |
Reference:
|
[9] A. Holmbom: The concept of parabolic two-scale convergence, a new compactness result and its application to homogenization of evolution partial differential equations. Research report 1994–18.(1994), Mid-Sweden University, Östersund. |
Reference:
|
[10] A. Holmbom: Some Modes of Convergence and Their Application to Homogenization and Optimal Composites Design.Ph.D. thesis, Luleå University of Technology, 1996. |
Reference:
|
[11] P. A. Markowich, F. Poupaud: The Maxwell equation in a periodic medium: Homogenization of the energy density.Ann. Sc. Norm. Sup. Pisa Cl. Sci. 23 (1996), 301–324. MR 1433425 |
Reference:
|
[12] A. Negro: Some problems of homogenization in quasistationary Maxwell equations.In: Applications of Multiple Scaling in Mechanics. Proc. Int. Conf., Ecole Normale Superieure, Paris 1986, Rech. Math. Appl. 4, Masson, Paris, 1987, pp. 246–258. Zbl 0644.73077, MR 0901998 |
Reference:
|
[13] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608–623. Zbl 0688.35007, MR 0990867, 10.1137/0520043 |
Reference:
|
[14] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44.Springer-Verlag, New York, 1983. MR 0710486 |
Reference:
|
[15] J. Sanchez-Hubert: Étude de certaines équations intégrodifférentielles issues de la théorie de l’homogénéisation.Boll. Un. Mat. Ital. B 5 16 (1979), 857–875. Zbl 0421.45009, MR 0553802 |
Reference:
|
[16] J. Sanchez-Hubert, E. Sanchez-Palencia: Sur certain problémes physiques d’homogénéisation donnant lieu à des phénomènes de relaxation.C. R. Acad. Sci. Paris, Sér. A 286 (1978), 903–906. MR 0509054 |
Reference:
|
[17] E. Sanchez-Palencia: Non-homogeneous Media and Vibration Theory Lecture Notes in Physics 127.Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0578345 |
Reference:
|
[18] J. Vanderlinde: Classical Electromagnetic Theory.John Wiley & Sons, New York, 1993. |
Reference:
|
[19] J. Wyller, N. Wellander, F. Larsson, D. S. Parasnis: Burger’s equation as a model for the IP phenomenon.Geophysical Prospecting 40 (1992), 325–341. 10.1111/j.1365-2478.1992.tb00378.x |
Reference:
|
[20] E. Zeidler: Nonlinear Functional Analysis and its Applications, Volumes IIA and IIB.Springer-Verlag, Berlin, 1990. |
Reference:
|
[21] V. V. Zhikov, S. M. Kozlov and O. A. Oleinik: Homogenization of Differential Operators and Integral Functionals.Springer-Verlag, Berlin, 1994. MR 1329546 |
. |