Previous |  Up |  Next

Article

Title: Homogenization of the Maxwell equations: Case I. Linear theory (English)
Author: Wellander, Niklas
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 1
Year: 2001
Pages: 29-51
Summary lang: English
.
Category: math
.
Summary: The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved. (English)
Keyword: Maxwell’s equations
Keyword: homogenization
Keyword: two-scale convergence
Keyword: corrector results
Keyword: heterogeneous materials
Keyword: periodic coefficients
Keyword: nonperiodic coefficients
Keyword: compactness result
Keyword: effective properties
Keyword: fiber composites
MSC: 35B27
MSC: 35Q60
MSC: 74Q10
MSC: 78A25
MSC: 78A48
MSC: 78M40
idZBL: Zbl 1058.78004
idMR: MR1808428
DOI: 10.1023/A:1013727504393
.
Date available: 2009-09-22T18:05:42Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/133893
.
Related article: http://dml.cz/handle/10338.dmlcz/133894
.
Reference: [1] G. Allaire: Homogenization and two-scale convergence.SIAM J.  Math. Anal. 23 (1992), 1482–2518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] M. Artola: Homogenization and electromagnetic wave propagation in composite media with high conductivity inclusions.In: Proceedings of the Second Workshop Composite Media and Homogenization Theory, G.  Dal Maso and G.  Dell’Antonio (eds.), World Scientific Publishing Company, Singapore-New York-London, 1995.
Reference: [3] M. Artola, M.  Cessenat: Un probléme raide avec homogénéisation en électromagnétisme.C.  R.  Acad. Sci. Paris, Sér. I Math. 310 (1990), 9–14. MR 1044404
Reference: [4] M. Artola, M.  Cessenat: Diffraction d’une onde électromagnetique par un obstacle borné à permittivité et perméabilité élevées.C. R.  Acad. Sci. Paris, Sér. I Math. 314 (1992), 349–354. MR 1153713
Reference: [5] A. Bensoussan, J.  L.  Lions, G. Papanicolaou: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications.North-Holland Publishing Company, Amsterdam-New York-Oxford, 1978. MR 0503330
Reference: [6] M. Cessenat: Mathematical Methods in Electromagnetism. Linear Theory and Applications. Series on Advances in Mathematics for Applied Sciences, Vol 41.World Scientific Publishing Company, Singapore-New York-London, 1996. MR 1409140
Reference: [7] G.  Duvaut, J. L.  Lions: Inequalities in Mechanics and Physics.Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0521262
Reference: [8] A.  Holmbom: Homogenization of parabolic equations: an alternative approach and some corrector-type results.Appl. Math. 42 (1997), 321–343. Zbl 0898.35008, MR 1467553, 10.1023/A:1023049608047
Reference: [9] A. Holmbom: The concept of parabolic two-scale convergence, a new compactness result and its application to homogenization of evolution partial differential equations. Research report 1994–18.(1994), Mid-Sweden University, Östersund.
Reference: [10] A.  Holmbom: Some Modes of Convergence and Their Application to Homogenization and Optimal Composites Design.Ph.D.  thesis, Luleå University of Technology, 1996.
Reference: [11] P. A. Markowich, F.  Poupaud: The Maxwell equation in a periodic medium: Homogenization of the energy density.Ann. Sc. Norm. Sup. Pisa Cl. Sci. 23 (1996), 301–324. MR 1433425
Reference: [12] A. Negro: Some problems of homogenization in quasistationary Maxwell equations.In: Applications of Multiple Scaling in Mechanics. Proc. Int. Conf., Ecole Normale Superieure, Paris 1986, Rech. Math. Appl. 4, Masson, Paris, 1987, pp. 246–258. Zbl 0644.73077, MR 0901998
Reference: [13] G.  Nguetseng: A general convergence result for a functional related to the theory of homogenization.SIAM J.  Math. Anal. 20 (1989), 608–623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [14] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44.Springer-Verlag, New York, 1983. MR 0710486
Reference: [15] J.  Sanchez-Hubert: Étude de certaines équations intégrodifférentielles issues de la théorie de l’homogénéisation.Boll. Un. Mat. Ital. B 5 16 (1979), 857–875. Zbl 0421.45009, MR 0553802
Reference: [16] J. Sanchez-Hubert, E. Sanchez-Palencia: Sur certain problémes physiques d’homogénéisation donnant lieu à des phénomènes de relaxation.C. R.  Acad. Sci. Paris, Sér. A  286 (1978), 903–906. MR 0509054
Reference: [17] E.  Sanchez-Palencia: Non-homogeneous Media and Vibration Theory Lecture Notes in Physics 127.Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0578345
Reference: [18] J.  Vanderlinde: Classical Electromagnetic Theory.John Wiley & Sons, New York, 1993.
Reference: [19] J.  Wyller, N.  Wellander, F. Larsson, D. S.  Parasnis: Burger’s equation as a model for the IP phenomenon.Geophysical Prospecting 40 (1992), 325–341. 10.1111/j.1365-2478.1992.tb00378.x
Reference: [20] E.  Zeidler: Nonlinear Functional Analysis and its Applications, Volumes IIA and IIB.Springer-Verlag, Berlin, 1990.
Reference: [21] V. V. Zhikov, S. M.  Kozlov and O. A.  Oleinik: Homogenization of Differential Operators and Integral Functionals.Springer-Verlag, Berlin, 1994. MR 1329546
.

Files

Files Size Format View
AplMat_46-2001-1_3.pdf 428.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo