Previous |  Up |  Next

Article

Title: Newton methods for solving two classes of nonsmooth equations (English)
Author: Gao, Yan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 3
Year: 2001
Pages: 215-229
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to two systems of nonsmooth equations. One is the system of equations of max-type functions and the other is the system of equations of smooth compositions of max-type functions. The Newton and approximate Newton methods for these two systems are proposed. The Q-superlinear convergence of the Newton methods and the Q-linear convergence of the approximate Newton methods are established. The present methods can be more easily implemented than the previous ones, since they do not require an element of Clarke generalized Jacobian, of B-differential, or of b-differential, at each iteration point. (English)
Keyword: nonsmooth equations
Keyword: Newton method
Keyword: approximate Newton method
Keyword: max-type function
Keyword: composite function
Keyword: convergence
MSC: 65H10
MSC: 90C30
idZBL: Zbl 1068.65063
idMR: MR1828306
DOI: 10.1023/A:1013791923957
.
Date available: 2009-09-22T18:06:40Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134465
.
Reference: [1] W. Chen, G. Chen and E. Feng: Variational principle with nonlinear complementarity for three dimensional contact problems and its numerical method.Sci. China Ser. A 39 (1996), 528–539. MR 1409809
Reference: [2] X. Chen: A verification method for solutions of nonsmooth equations.Computing 58 (1997), 281–294. Zbl 0882.65038, MR 1457114, 10.1007/BF02684394
Reference: [3] F. H. Clarke: Optimization and Nonsmooth Analysis.John Wiley and Sons, New York, 1983. Zbl 0582.49001, MR 0709590
Reference: [4] V. F. Demyanov, G. E. Stavroulakis, L. N. Polyakova, and P. D. Panagiotopoulous: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economic.Kluwer Academic Publishers, Dordercht, 1996. MR 1409141
Reference: [5] F. Meng, Y. Gao and Z. Xia: Second-order directional derivatives for max-type functions.J. Dalian Univ. Tech. 38 (1998), 621–624. (Chinese) MR 1667292
Reference: [6] M.  Mifflin: Semismooth and semiconvex functions in constrained optimization.SIAM J. Control Optim. 15 (1977), 959–972. Zbl 0376.90081, MR 0461556, 10.1137/0315061
Reference: [7] J. M. Ortega, W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York, 1970. MR 0273810
Reference: [8] L. Qi: Convergence analysis of some algorithms for solving nonsmooth equations.Math. Oper. Res. 18 (1993), 227–244. Zbl 0776.65037, MR 1250115, 10.1287/moor.18.1.227
Reference: [9] L. Qi, J. Sun: A nonsmooth version of Newton’s method.Math. Programming 58 (1993), 353–367. MR 1216791, 10.1007/BF01581275
Reference: [10] D. Sun, J. Han: Newton and quasi-Newton methods for a class of nonsmooth equations and related problems.SIAM J. Optim. 7 (1997), 463–480. MR 1443629, 10.1137/S1052623494274970
.

Files

Files Size Format View
AplMat_46-2001-3_3.pdf 354.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo