Previous |  Up |  Next

Article

Title: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle for the discrete case (English)
Author: Práger, Milan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 3
Year: 2001
Pages: 231-239
Summary lang: English
.
Category: math
.
Summary: A discretized boundary value problem for the Laplace equation with the Dirichlet and Neumann boundary conditions on an equilateral triangle with a triangular mesh is transformed into a problem of the same type on a rectangle. Explicit formulae for all eigenvalues and all eigenfunctions are given. (English)
Keyword: discrete Laplace operator
Keyword: discrete boundary value problem
Keyword: eigenvalues
Keyword: eigenfunctions
MSC: 35J05
MSC: 35P10
MSC: 35R10
MSC: 65N06
MSC: 65N25
idZBL: Zbl 1059.65101
idMR: MR1828307
DOI: 10.1023/A:1013744008028
.
Date available: 2009-09-22T18:06:46Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134466
.
Reference: [1] M. Práger: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle.Appl. Math. 43 (1998), 311–320. MR 1627985, 10.1023/A:1023269922178
.

Files

Files Size Format View
AplMat_46-2001-3_4.pdf 357.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo