Previous |  Up |  Next

Article

Title: On the existence of a generalized solution to a three-dimensional elliptic equation with radiation boundary condition (English)
Author: Simon, László
Author: Stoyan, Gisbert
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 4
Year: 2001
Pages: 241-250
Summary lang: English
.
Category: math
.
Summary: For a second order elliptic equation with a nonlinear radiation-type boundary condition on the surface of a three-dimensional domain, we prove existence of generalized solutions without explicit conditions (like $u\big |_\Gamma \in L_5(\Gamma )$) on the trace of solutions. In the boundary condition, we admit polynomial growth of any fixed degree in the unknown solution, and the heat exchange and emissivity coefficients may vary along the radiating surface. Our generalized solution is contained in a Sobolev space with an exponent $q$ which is greater than $9/4$ for the fourth power law. (English)
Keyword: radiation boundary condition
Keyword: generalized solution
Keyword: existence
MSC: 35D05
MSC: 35J60
MSC: 35J65
idZBL: Zbl 1059.35043
idMR: MR1842550
DOI: 10.1023/A:1013796024866
.
Date available: 2009-09-22T18:06:54Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134467
.
Reference: [1] R. A.  Adams: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] S. C.  Brenner, L. R.  Scott: The Mathematical Theory of Finite Element Methods.Springer-Verlag, New York, 1994. MR 1278258
Reference: [3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [4] D. S. Cohen: Generalized radiation cooling of a convex solid.J.  Math. Anal. Appl. 35 (1971), 503–511. Zbl 0218.35036, MR 0284092, 10.1016/0022-247X(71)90198-3
Reference: [5] M. C. Delfour, G. Payre and J.-P.  Zolésio: Approximation of nonlinear problems associated with radiating bodies in space.SIAM J. Numer. Anal. 24 (1987), 1077–1094. MR 0909066, 10.1137/0724071
Reference: [6] A.  Friedman: Generalized heat transfer between solids and bases under nonlinear boundary conditions.J.  Math. Mech. 8 (1959), 161–183. MR 0102345
Reference: [7] L.  Gergó, G. Stoyan: On a mathematical model of a radiating, viscous, heat-conducting fluid: Remarks on a paper by J. Förste.Z.  Angew.  Math.  Mech. 77 (1997), 367–375. MR 1455357, 10.1002/zamm.19970770510
Reference: [8] P. Grisvard: Elliptic Problems in Nonsmooth Domains.Pitman, Boston-London-Melbourne, 1985. Zbl 0695.35060, MR 0775683
Reference: [9] S. S. Kutateladze: Basic Principles of the Theory of Heat Exchange, 4th ed.Nauka, Novosibirsk, 1970. (Russian)
Reference: [10] J. L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications, Vol. 1,  2.Dunod, Paris, 1968. MR 0247243
Reference: [11] L. Liu, M.  Křížek: Finite element analysis of a radiation heat transfer problem.J.  Comput. Math. 16 (1998), 327–336.
Reference: [12] Z. Milka: Finite element solution of a stationary heat conduction equation with the radiation boundary condition.Appl. Math. 38 (1993), 67–79. Zbl 0782.65130, MR 1202081
Reference: [13] L. Simon: On approximation of the solutions of quasilinear elliptic equations in $\mathbb{R}^n$.Acta Sci. Math. (Szeged) 47 (1984), 239–247. MR 0755579
Reference: [14] L. Simon: Radiation conditions and the principle of limiting absorption for quasilinear elliptic equations.Dokl. Akad. Nauk 288 (1986), 316–319. (Russian) Zbl 0629.35042, MR 0843446
Reference: [15] B.  Szabó, I.  Babuška: Finite Element Analysis.Wiley, New York, 1991. MR 1164869
.

Files

Files Size Format View
AplMat_46-2001-4_1.pdf 330.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo