Previous |  Up |  Next

Article

Title: Finite element solution of the fundamental equations of semiconductor devices. II (English)
Author: Zlámal, Miloš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 4
Year: 2001
Pages: 251-294
Summary lang: English
.
Category: math
.
Summary: In part I of the paper (see Zlámal [13]) finite element solutions of the nonstationary semiconductor equations were constructed. Two fully discrete schemes were proposed. One was nonlinear, the other partly linear. In this part of the paper we justify the nonlinear scheme. We consider the case of basic boundary conditions and of constant mobilities and prove that the scheme is unconditionally stable. Further, we show that the approximate solution, extended to the whole time interval as a piecewise linear function, converges in a strong norm to the weak solution of the semiconductor equations. These results represent an extended and corrected version of results announced without proof in Zlámal [14]. (English)
Keyword: semiconductor devices
Keyword: finite element method
Keyword: fully discrete approximate solution
Keyword: convergence
MSC: 35Q60
MSC: 65M06
MSC: 65M12
MSC: 65M60
MSC: 65N12
MSC: 65N30
MSC: 82D37
idZBL: Zbl 1066.65107
idMR: MR1842551
DOI: 10.1023/A:1013748108936
.
Date available: 2009-09-22T18:07:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134468
.
Reference: [1] J. Bergh, J. Löfström: Interpolation Spaces.Springer Verlag, Berlin-Heidelberg-New York, 1976. MR 0482275
Reference: [2] J. Céa: Optimization.Dunod, Paris, 1971. Zbl 0231.94026, MR 0298892
Reference: [3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam-New York-Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [4] J. F. Ciavaldini: Analyse numérique d’un problème de Stefan à deux phases par une méthode d’eléments finis.SIAM J. Numer. Anal. 12 (1975), 464–487. Zbl 0272.65101, MR 0391741, 10.1137/0712037
Reference: [5] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0473443
Reference: [6] V. Giraud, P. A. Raviart: Finite Element Approximation of the Navier-Stokes Equations.Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 0540128
Reference: [7] G. Grisvard: Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain.In: Numerical Solution of Partial Differential Equations—III (B. Hubbard, ed.), Academic Press, New York-San Francisco-London, 1978, pp. 207–274. MR 0466912
Reference: [8] A. Kufner, O. John and S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [9] J. L. Lions: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires.Dunod Gauthier-Villars, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [10] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [11] R. Rannacher, R. Scott: Some optimal error estimates for piecewise linear finite element approximations.Math. Comp. 38 (1982), 437–445. MR 0645661, 10.1090/S0025-5718-1982-0645661-4
Reference: [12] P. A. Raviart: The use of numerical integration in finite element methods for solving parabolic equations.In: Topics in Numerical Analysis (J. J. H. Miller, ed.), Academic Press, London-New York, 1973, pp. 233–264. Zbl 0293.65086, MR 0345428
Reference: [13] M. Zlámal: Finite element solution of the fundamental equations of semiconductor devices I.Math. Comp. 46 (1986), 27–43. MR 0815829, 10.1090/S0025-5718-1986-0815829-6
Reference: [14] M. Zlámal: Finite element solution of the fundamental equations of semiconductor devices.In: Numerical Approximation of Partial Differential Equations (E. L. Ortiz, ed.), North-Holland, Amsterdam-New York-Oxford-Tokyo, 1987, pp. 121–128. MR 0899784
Reference: [15] M. Zlámal: Curved elements in the finite element method I.SIAM J. Numer. Anal. 10 (1973), 229–240. MR 0395263, 10.1137/0710022
.

Files

Files Size Format View
AplMat_46-2001-4_2.pdf 562.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo