Previous |  Up |  Next

Article

Title: Nonmonotone strategy for minimization of quadratics with simple constraints (English)
Author: Diniz-Ehrhardt, M. A.
Author: Dostál, Z.
Author: Gomes-Ruggiero, M. A.
Author: Martínez, J. M.
Author: Santos, S. A.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 5
Year: 2001
Pages: 321-338
Summary lang: English
.
Category: math
.
Summary: An algorithm for quadratic minimization with simple bounds is introduced, combining, as many well-known methods do, active set strategies and projection steps. The novelty is that here the criterion for acceptance of a projected trial point is weaker than the usual ones, which are based on monotone decrease of the objective function. It is proved that convergence follows as in the monotone case. Numerical experiments with bound-constrained quadratic problems from CUTE collection show that the modified method is in practice slightly more efficient than its monotone counterpart and has a performance superior to the well-known code LANCELOT for this class of problems. (English)
Keyword: quadratic programming
Keyword: conjugate gradients
Keyword: active set methods
MSC: 65F15
MSC: 65K05
MSC: 65K10
MSC: 90C20
MSC: 90C52
idZBL: Zbl 1066.65065
idMR: MR1925191
DOI: 10.1023/A:1013752209845
.
Date available: 2009-09-22T18:07:20Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134471
.
Reference: [1] D. P.  Bertsekas: Projected Newton methods for optimization problems with simple constraints.SIAM J. Control Optim. 20 (1982), 141–148. Zbl 0507.49018, MR 0646950, 10.1137/0320018
Reference: [2] R. H.  Bielschowsky, A.  Friedlander, F. A. M.  Gomes, J. M. Martínez and M.  Raydan: An adaptive algorithm for bound constrained quadratic minimization.Investigación Oper. 7 (1997), 67–102.
Reference: [3] I.  Bongartz, A. R. Conn, N. I. M.  Gould and Ph. L.  Toint: CUTE: Constrained and Unconstrained Testing Environment.ACM Trans. Math. Software 21 (1995), 123–160. 10.1145/200979.201043
Reference: [4] P. Ciarlet: The Finite Element Method for Elliptic Problems.North Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [5] T. F.  Coleman, L. A.  Hulbert: A direct active set algorithm for large sparse quadratic programs with simple bounds.Math. Programming 45 (1989), 373–406. MR 1038241, 10.1007/BF01589112
Reference: [6] A. R.  Conn, N. I. M.  Gould and Ph. L.  Toint: Global convergence of a class of trust region algorithms for optimization with simple bounds.SIAM J.  Numer. Anal. 25 (1988), 433-460. MR 0933734, 10.1137/0725029
Reference: [7] A. R. Conn, N. I. M.  Gould and Ph. L. Toint: A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds.SIAM J.  Numer. Anal. 28 (1988), 545–572. MR 1087519
Reference: [8] R.  Dembo, U.  Tulowitzki: On the minimization of quadratic functions subject to box constraints.Working Paper B-71, School of Organization and Management, Yale University, New Haven (1983).
Reference: [9] J. E. Dennis, L. N.  Vicente: Trust-region interior-point algorithms for minimization problems with simple bounds.In: Applied Mathematics and Parallel Computing (Festschrift for Klaus Ritter) (H. Fischer, B. Riedmüller and S. Schäffer, eds.), Physica-Verlag, Springer-Verlag, 1996, pp. 97–107. MR 1469263
Reference: [10] M. A.  Diniz-Ehrhardt, M. A.  Gomes-Ruggiero and S. A.  Santos: Comparing the numerical performance of two trust-region algorithms for large-scale bound-constrained minimization.Investigación Oper. 7 (1997), 23–54.
Reference: [11] M. A.  Diniz-Ehrhardt, M. A.  Gomes-Ruggiero and S. A.  Santos: Numerical analysis of leaving-face parameters in bound-constrained quadratic minimization.Relatório de Pesquisa RP52/98, IMECC, UNICAMP, Campinas, Brazil, 1998.
Reference: [12] Z. Dostál: Box constrained quadratic programming with proportioning and projections.SIAM J. Optim. 7 (1997), 871–887. MR 1462070, 10.1137/S1052623494266250
Reference: [13] Z.  Dostál, A.  Friedlander and S. A.  Santos: Solution of contact problems of elasticity by FETI domain decomposition.Contemp. Math. 218 (1998), 82–93. MR 1645845, 10.1090/conm/218/03003
Reference: [14] Z.  Dostál, F. A. M.  Gomes Neto and S. A.  Santos: Solution of contact problems by FETI domain decomposition with natural coarse space projection.Comput. Methods Appl. Mech. Engrg. 190 (2000), 1611–1627. 10.1016/S0045-7825(00)00180-8
Reference: [15] Z.  Dostál, V.  Vondrák: Duality based solution of contact problems with Coulomb friction.Arch. Mech. 49 (1997), 453–460. MR 1468556
Reference: [16] L.  Fernandes, A.  Fischer, J. J.  Júdice, C. Requejo and C.  Soares: A block active set algorithm for large-scale quadratic programming with box constraints.Ann. Oper. Res. 81 (1998), 75–95. MR 1638391, 10.1023/A:1018990014974
Reference: [17] A.  Friedlander, J. M.  Martínez: On the numerical solution of bound constrained optimization problems.RAIRO Rech. Opér. 23 (1989), 319–341. MR 1036699, 10.1051/ro/1989230403191
Reference: [18] A.  Friedlander, J. M.  Martínez: On the maximization of a concave quadratic function with box constraints.SIAM J.  Optim. 4 (1994), 177–192. MR 1260414, 10.1137/0804010
Reference: [19] A.  Friedlander, J. M.  Martínez and M.  Raydan: A new method for large-scale box constrained quadratic minimization problems.Optimization Methods and Software 5 (1995), 57–74. 10.1080/10556789508805602
Reference: [20] A.  Friedlander, J. M.  Martínez and S. A.  Santos: A new trust region algorithm for bound constrained minimization.Appl. Math. Optim. 30 (1994), 235–266. MR 1288591, 10.1007/BF01183013
Reference: [21] P. E. Gill, W.  Murray and M. H.  Wright: Practical Optimization.Academic Press, London and New York, 1981. MR 0634376
Reference: [22] G. H.  Golub, Ch. F.  Van Loan: Matrix Computations.The Johns Hopkins University Press, Baltimore and London, 1989. MR 1002570
Reference: [23] M. R.  Hestenes, E.  Stiefel: Methods of conjugate gradients for solving linear systems.J.  Res. NBS B 49 (1952), 409–436. MR 0060307
Reference: [24] J.  J.  Júdice, F.  M.  Pires: Direct methods for convex quadratic programming subject to box constraints.Investigação Operacional 9 (1989), 23–56.
Reference: [25] Y.  Lin, C. W.  Cryer: An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problems.Appl. Math. Optim. 13 (1985), 1–17. MR 0778418, 10.1007/BF01442196
Reference: [26] P.  Lötstedt: Numerical simulation of time-dependent contact and friction problems in rigid body mechanics.SIAM J.  Sci. Comput. 5 (1984), 370–393. MR 0740855, 10.1137/0905028
Reference: [27] P.  Lötstedt: Solving the minimal least squares problem subject to bounds on the variables.BIT 24 (1984), 206–224. MR 0753549
Reference: [28] J. J.  Moré, G.  Toraldo: On the solution of large quadratic programming problems with bound constraints.SIAM J.  Optim. 1 (1991), 93–113. MR 1094793, 10.1137/0801008
Reference: [29] R. H.  Nickel, J. W.  Tolle: A sparse sequential programming algorithm.J.  Optim. Theory Appl. 60 (1989), 453–473. MR 0993010, 10.1007/BF00940348
Reference: [30] M. Raydan: On the Barzilai and Borwein choice of steplength for the gradient method.IMA J.  Numer. Anal. 13 (1993), 321–326. Zbl 0778.65045, MR 1225468, 10.1093/imanum/13.3.321
Reference: [31] E. K.  Yang, J. W.  Tolle: A class of methods for solving large, convex quadratic programs subject to box constraints.Tech. Rep. UNC/ORSA/TR-86-3, Dept. of Oper. Research and Systems Analysis, Univ. of North Carolina, Chapel Hill, NC. (1986).
.

Files

Files Size Format View
AplMat_46-2001-5_1.pdf 409.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo