Previous |  Up |  Next

Article

Title: On exact results in the finite element method (English)
Author: Hlaváček, Ivan
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 6
Year: 2001
Pages: 467-478
Summary lang: English
.
Category: math
.
Summary: We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution $u$. We show that the Galerkin approximation of $u$ based on the so-called biharmonic finite elements is independent of the values of $u$ in the interior of any subelement. (English)
Keyword: boundary value elliptic problems
Keyword: finite element method
Keyword: generalized splines
Keyword: elastic plate
MSC: 35J40
MSC: 65N30
idZBL: Zbl 1066.65126
idMR: MR1865517
DOI: 10.1023/A:1013716729409
.
Date available: 2009-09-22T18:08:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134478
.
Reference: [1] J.  H.  Ahlberg, E.  N.  Nilson and J. L.  Walsh: The Theory of Splines and Their Applications.Academic Press, London, 1967. MR 0239327
Reference: [2] I.  Babuška, M.  Práger and E. Vitásek: Numerical Processes in Differential Equations.John Wiley & Sons, London, 1966. MR 0223101
Reference: [3] C.  Baiocchi, F.  Brezzi and L. P.  Franca: Virtual bubbles and Galerkin-least-squares type methods.Comput. Methods Appl. Mech. Engrg. 105 (1993), 125–141. MR 1222297, 10.1016/0045-7825(93)90119-I
Reference: [4] G.  H.  Behforooz, N.  Papamichael: Improved orders of approximation derived from interpolatory cubic splines.BIT 19 (1979), 19–26. MR 0530111, 10.1007/BF01931217
Reference: [5] M.  Bernadou: Convergence of conforming finite element methods for general shell problems.Internat. J. Engrg. Sci. 18 (1980), 249–276. Zbl 0429.73084, MR 0661274, 10.1016/0020-7225(80)90049-X
Reference: [6] J.  Brandts: Superconvergence phenomena in finite element methods.PhD thesis, Utrecht Univ. (1995).
Reference: [7] F. Brezzi, A. Russo: Choosing bubbles for advection-diffusion problems.Math. Models Methods Appl. Sci. 4 (1994), 571–587. MR 1291139, 10.1142/S0218202594000327
Reference: [8] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [9] G.  Heindl: Interpolation and approximation by piecewise quadratic $C^1$-functions of two variables.In: Multivariate Approximation Theory (W. Schempp and K. Zeller, eds.), ISNM vol. 51, Birkhäuser, Basel, 1979, pp. 146–161. MR 0560670
Reference: [10] I.  Hlaváček, J.  Nečas: On inequalities of Korn’s type.Arch. Rational Mech. Anal. 36 (1970), 305–334. 10.1007/BF00249518
Reference: [11] V.  Hoppe: Finite elements with harmonic interpolation functions.In: Proc. Conf. MAFELAP (J. R.  Whiteman, ed.), Academic Press, London, 1973, pp. 131–142. Zbl 0278.73051
Reference: [12] D.  Huang, D. Wu: The superconvergence of the spline finite element solution and its second order derivative for the two-point boundary problem of a fourth order differential equation.J.  Zhejiang Univ. 3 (1982), 92–99.
Reference: [13] M.  Křížek, L.  Liu, P. Neittaanmäki: On harmonic and biharmonic finite elements.In: Finite Element Methods III: Three-dimensional problems, Vol. 15, M. Křížek, P. Neittaanmäki (eds.), GAKUTO Internat. Ser. Math. Sci. Appl., Tokyo, 2001, pp. 146–154. MR 1896273
Reference: [14] M.  Křížek, P.  Neittaanmäki: On time-harmonic Maxwell equations with nonhomogeneous conductivities: solvability and FE-approximation.Apl.  Mat. 34 (1989), 480–499. MR 1026513
Reference: [15] M.  Křížek, P.  Neittaanmäki: Finite Element Approximation of Variational Problems and Applications.Longman, Harlow, 1990. MR 1066462
Reference: [16] J. E.  Lagnese, J.-L.  Lions: Modelling Analysis and Control of Thin Plates.Masson, Paris and Springer-Verlag, Berlin, 1989.
Reference: [17] Q.  Lin: Full convergence order for hyperbolic finite elements.In: Proc. Conf. Discrete Galerkin Methods (B.  Cockburn, ed.), Newport 1999, pp. 167–177. MR 1842172
Reference: [18] J.  Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, Oxford, New York, 1981. MR 0600655
Reference: [19] K.  Rektorys: Variational Methods in Mathematics, Science and Engineering, chap. 23.Riedel, Dodrecht, 1980. MR 0596582
Reference: [20] G.  Strang, G.  Fix: An Analysis of the Finite Element Method.Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1973. MR 0443377
Reference: [21] P.  Tong: Exact solutions of certain problems by finite-element method.AIAA J. 7 (1969), 178–180. 10.2514/3.5067
Reference: [22] C.  Wielgosz: Exact results given by finite element methods in mechanics.J.  Méch. Théor. Appl. 1 (1982), 323–329. Zbl 0503.73046, MR 0700053
.

Files

Files Size Format View
AplMat_46-2001-6_4.pdf 358.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo