Previous |  Up |  Next

Article

Title: Minimum disparity estimators for discrete and continuous models (English)
Author: Menéndez, M.
Author: Morales, D.
Author: Pardo, L.
Author: Vajda, I.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 6
Year: 2001
Pages: 439-466
Summary lang: English
.
Category: math
.
Summary: Disparities of discrete distributions are introduced as a natural and useful extension of the information-theoretic divergences. The minimum disparity point estimators are studied in regular discrete models with i.i.d. observations and their asymptotic efficiency of the first order, in the sense of Rao, is proved. These estimators are applied to continuous models with i.i.d. observations when the observation space is quantized by fixed points, or at random, by the sample quantiles of fixed orders. It is shown that the random quantization leads to estimators which are robust in the sense of Lindsay [9], and which can achieve the efficiency in the underlying continuous models provided these are regular enough. (English)
Keyword: divergence
Keyword: disparity
Keyword: minimum disparity estimators
Keyword: robustness
Keyword: asymptotic efficiency
MSC: 62B10
MSC: 62E20
idZBL: Zbl 1059.62001
idMR: MR1865516
DOI: 10.1023/A:1013764612571
.
Date available: 2009-09-22T18:07:59Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134477
.
Reference: [1] A. Basu, S.  Sarkar: Minimum disparity estimation in the errors-in-variables model.Statist. Probab. Lett. 20 (1994), 69–73. MR 1294806, 10.1016/0167-7152(94)90236-4
Reference: [2] A. Basu, S.  Sarkar: The trade-off between robustness and efficiency and the effect of model smoothing.J.  Statist. Comput. Simulation 50 (1994), 173–185. 10.1080/00949659408811609
Reference: [3] M. W. Birch: A new proof of the Pearson-Fisher theorem.Ann. Math. Statist. 35 (1964), 817–824. Zbl 0259.62017, MR 0169324, 10.1214/aoms/1177703581
Reference: [4] E. Bofinger: Goodness-of-fit using sample quantiles.J.  Roy. Statist. Soc. Ser.  B 35 (1973), 277–284. MR 0336896
Reference: [5] H. Cramér: Mathematical Methods of Statistics.Princeton University Press, Princeton, 1946. MR 0016588
Reference: [6] N. A. C. Cressie, R. C.  Read: Multinomial goodness-of-fit tests.J.  Roy. Statist. Soc. Ser.  B 46 (1984), 440–464. MR 0790631
Reference: [7] R. A. Fisher: Statistical Methods for Research Workers (8th edition).London, 1941.
Reference: [8] F.  Liese, I.  Vajda: Convex Statistical Distances.Teubner, Leipzig, 1987. MR 0926905
Reference: [9] B. G. Lindsay: Efficiency versus robutness: The case for minimum Hellinger distance and other methods.Ann. Statist. 22 (1994), 1081–1114. MR 1292557, 10.1214/aos/1176325512
Reference: [10] M. L.  Menéndez, D.  Morales, L.  Pardo and I. Vajda: Two approaches to grouping of data and related disparity statistics.Comm. Statist. Theory Methods 27 (1998), 609–633. MR 1619038, 10.1080/03610929808832117
Reference: [11] M. L.  Menéndez, D.  Morales, L.  Pardo and I. Vajda: Minimum divergence estimators based on grouped data.Ann. Inst. Statist. Math. 53 (2001), 277–288. MR 1841136, 10.1023/A:1012466605316
Reference: [12] D. Morales, L.  Pardo and I. Vajda: Asymptotic divergence of estimates of discrete distributions.J.  Statist. Plann. Inference 48 (1995), 347–369. MR 1368984, 10.1016/0378-3758(95)00013-Y
Reference: [13] J. Neyman: Contribution to the theory of the $\chi ^2$ test.In: Proc. Berkeley Symp. Math. Statist. Probab., Berkeley, CA, Berkeley University Press, Berkeley, 1949, pp. 239–273. MR 0028003
Reference: [14] Ch.  Park, A.  Basu and S. Basu: Robust minimum distance inference based on combined distances.Comm. Statist. Simulation Comput. 24 (1995), 653–673. 10.1080/03610919508813265
Reference: [15] C. R. Rao: Asymptotic efficiency and limiting information.In: Proc. 4th Berkeley Symp. Math. Stat. Probab., Berkeley, CA, Berkeley University Press, Berkeley, 1961, pp. 531–545. Zbl 0156.39802, MR 0133192
Reference: [16] C. R.  Rao: Linear Statistical Inference and its Applications (2nd edition).Wiley, New York, 1973. MR 0346957
Reference: [17] R. C. Read, N. A. C.  Cressie: Goodness-of-fit Statistics for Discrete Multivariate Data.Springer-Verlag, New York, 1988. MR 0955054
Reference: [18] C. A. Robertson: On minimum discrepancy estimators.Sankhyä Ser. A 34 (1972), 133–144. Zbl 0266.62021, MR 0331606
Reference: [19] I.  Vajda: $\chi ^2$-divergence and generalized Fisher information.In: Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Academia, Prague, 1973, pp. 223–234. Zbl 0297.62003, MR 0356302
Reference: [20] I. Vajda: Theory of Statistical Inference and Information.Kluwer Academic Publishers, Boston, 1989. Zbl 0711.62002
Reference: [21] B. L. van der Waarden: Mathematische Statistik.Springer-Verlag, Berlin, 1957.
Reference: [22] K. Pearson: On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.Philosophical Magazine 50 (1990), 157–172.
Reference: [23] I. Csiszár: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten.Publications of the Mathematical Institute of the Hungarian Academy of Sciences, Series A 8 (1963), 85–108. MR 0164374
Reference: [24] M. S. Ali, S. D. Silvey: A general class of coefficients of divergence of one distribution from another.J.  Roy. Statist. Soc. Ser. B 28 (1966), 131–140. MR 0196777
Reference: [25] A. Rényi: On measures of entropy and information.In: Proceedings of the 4th Berkeley Symposium on Probability Theory and Mathematical Statistics, Vol. 1, University of California Press, Berkeley, 1961, pp. 531–546. MR 0132570
Reference: [26] A. W. Marshall, I. Olkin: Inequalities: Theory of Majorization and its Applications.Academic Press, New York, 1979. MR 0552278
.

Files

Files Size Format View
AplMat_46-2001-6_3.pdf 584.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo