Previous |  Up |  Next

Article

Title: Composite grid finite element method: Implementation and iterative solution with inexact subproblems (English)
Author: Blaheta, R.
Author: Byczanski, P.
Author: Kohut, R.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 2
Year: 2002
Pages: 83-100
Summary lang: English
.
Category: math
.
Summary: This paper concerns the composite grid finite element (FE) method for solving boundary value problems in the cases which require local grid refinement for enhancing the approximating properties of the corresponding FE space. A special interest is given to iterative methods based on natural decomposition of the space of unknowns and to the implementation of both the composite grid FEM and the iterative procedures for its solution. The implementation is important for gaining all benefits of the described methods. We also discuss the case of inexact subproblems, which can frequently arise in the course of hierarchical modelling. (English)
Keyword: finite element method
Keyword: composite grids
Keyword: iterative solution
Keyword: computer implementation
Keyword: inexact subproblems
Keyword: numerical experiments
MSC: 65F10
MSC: 65N22
MSC: 65N30
MSC: 65N55
idZBL: Zbl 1090.65546
idMR: MR1894662
DOI: 10.1023/A:1021776900481
.
Date available: 2009-09-22T18:08:59Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134487
.
Reference: [1] O. Axelsson, V. A.  Barker: Finite Element Solution of Boundary Value Problems.Academic Press, Orlando, Florida, 1984. MR 0758437
Reference: [2] R. Blaheta: Iterative local refinement methods for nonlinear problems. HIPERGEOS report.IGAS Ostrava, 1998.
Reference: [3] R. Blaheta: Adaptive composite grid methods for problems of plasticity.Math. Comput. Simulation 50 (1999), 123–134. MR 1717646, 10.1016/S0378-4754(99)00064-6
Reference: [4] R. Blaheta: Space decomposition methods: displacement decomposition, composite grid finite elements and overlapping domain decomposition.In: Proceedings of the Conference Contemporary Mathematical Methods in Engineering, J. Doležalová (ed.), TU Ostrava, 2000, pp. 7–16.
Reference: [5] R. Blaheta: GPCG: CG method with general preconditioning and its applications.In: Proceedings of the Conference PRISM’01, O. Axelsson, B. Polman, M. Neytcheva (eds.), KUN Nijmegen, The Netherlands, 2001, pp. 9–15.
Reference: [6] D. Braess: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics.Cambridge University Press, Cambridge UK, 1997. Zbl 0894.65054, MR 1463151
Reference: [7] J. H. Bramble, D. E.  Ewing, J. E. Pasciak and A. H. Schatz: A preconditioning technique for the efficient solution of problems with local grid refinement.Comput. Meth. Appl. Mech. Engrg. 67 (1988), 149–159. 10.1016/0045-7825(88)90122-3
Reference: [8] R. D. Cook: Finite Element Modeling for Stress Analysis.J. Wiley, New York, 1995. Zbl 0837.73001
Reference: [9] T. F. Chan, T. P.  Mathew: Domain decomposition algorithms.Acta Numerica 3 (1994), 61–143. MR 1288096, 10.1017/S0962492900002427
Reference: [10] L. Hart, S. F. McCormick: Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Basic ideas.Parallel Comput. 12 (1989), 131–144. MR 1026394, 10.1016/0167-8191(89)90048-3
Reference: [11] J. Mandel, S. F. McCormick: Iterative solution of elliptic equations with refinement: the two-level case.In: Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund (eds.), SIAM, Philadelphia, 1989, pp. 81–92. MR 0992005
Reference: [12] J.  Mandel, S. F.  McCormick: Iterative solution of elliptic equations with refinement: the model multi-level case.In: Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund (eds.), SIAM, Philadelphia, 1989, pp. 93–102. MR 0992006
Reference: [13] S. F. McCormick: Fast adaptive grid (FAC) methods: theory for variational case.In: Defect Correction Methods: Theory and Applications, K. Böhmer, H. J. Stetter (eds.), Computing Supplementum, 5, Springer-Verlag, Wien, 1984, pp. 115–122. MR 0782693
Reference: [14] S. F.  McCormick: Multilevel Adaptive Methods for Partial Differential Equations.SIAM, Philadelphia, 1989. Zbl 0707.65080, MR 1056696
Reference: [15] S. F. McCormick, D.  Quinlan: Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Performance results.Parallel Comput. 12 (1989), 145–156. MR 1026395, 10.1016/0167-8191(89)90049-5
Reference: [16] P. S. Vassilevski, L. T. Zikatanov: Local refinement solution of 3D elasticity equations. Project Report, COPERNICUS CP94-00820, 1995..
Reference: [17] O. B.  Widlund: Optimal iterative refinement methods.In: Domain Decomposition Methods, T. F. Chan, R.  Glowinski, J.  Periaux and O. B.  Widlund (eds.), SIAM, Philadelphia, 1989, pp. 114–125. Zbl 0682.65066, MR 0992008
.

Files

Files Size Format View
AplMat_47-2002-2_2.pdf 391.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo