Previous |  Up |  Next

Article

Title: On a system of equations of evolution with a non-symmetrical parabolic part occuring in the analysis of moisture and heat transfer in porous media (English)
Author: Vala, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 2
Year: 2002
Pages: 187-214
Summary lang: English
.
Category: math
.
Summary: Most non-trivial existence and convergence results for systems of partial differential equations of evolution exclude or avoid the case of a non-symmetrical parabolic part. Therefore such systems, generated by the physical analysis of the processes of transfer of heat and moisture in porous media, cannot be analyzed easily using the standard results on the convergence of Rothe sequences (e.g. those of W. Jäger and J. Kačur). In this paper the general variational formulation of the corresponding system is presented and its existence and convergence properties are verified; its application to one model problem (preserving the symmetry in the elliptic, but not in the parabolic part) is demonstrated. (English)
Keyword: PDE’s of evolution
Keyword: method of Rothe
Keyword: porous media
Keyword: moisture and heat transfer
MSC: 35K05
MSC: 35K15
idZBL: Zbl 1090.35083
idMR: MR1894669
DOI: 10.1023/A:1021741320045
.
Date available: 2009-09-22T18:09:43Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134494
.
Reference: [1] J. Appell, P. P. Zabrejko: Nonlinear Superposition Operators.Cambridge University Press, 1980. MR 1066204
Reference: [2] J. Dalík, J. Daněček and S. Šťastník: The Kiessl model, existence of classical solution.In: Proceedings of the conference “Matematická štatistika, numerická matematika a ich aplikácie”, Kočovce (Slovak Republic),  (eds.), 1999, pp. 62–75. (Slovak)
Reference: [3] J. Dalík, J. Daněček and J.  Vala: Numerical solution of the Kiessl model.Appl. Math. 45 (2000), 3–17. MR 1738893, 10.1023/A:1022232632054
Reference: [4] J. Dalík, J. Svoboda and S. Šťastník: A model of moisture and temperature propagation.Preprint, Technical University (Faculty of Civil Engineering) in Brno, 2000.
Reference: [5] J. Franců: Monotone operators—a survey directed to differential equations.Appl. Math. 35 (1991), 257–300. MR 1065003
Reference: [6] J. Franců: Weakly continuous operators—applications to differential equations.Appl. Math. 39 (1994), 45–56. MR 1254746
Reference: [7] S. Fučík, A. Kufner: Nonlinear Differential Equations.Elsevier, Amsterdam, 1980. MR 0558764
Reference: [8] H. Gajewski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie Verlag, Berlin, 1974. MR 0636412
Reference: [9] H. Glaser: Wärmeleitung und Feuchtigkeitdurchgang durch Kühlraumisolierungen.Kältetechnik H.3 (1958), 86–91.
Reference: [10] W. Jäger, J. Kačur: Solution of porous medium type systems by linear approximation schemes.Numer. Math. 60 (1991), 407–427. MR 1137200, 10.1007/BF01385729
Reference: [11] W.  Jäger, J. Kačur: Approximation of porous medium type systems by nondegenerate elliptic systems.Stochastische mathematische Modelle, Preprint 123, University of Heidelberg, 1990.
Reference: [12] J. Kačur: Method of Rothe in Evolution Equations.Teubner-Verlag, Leipzig, 1985. MR 0834176
Reference: [13] J. Kačur: Solution of some free boundary problems by relaxation schemes.Preprint M3-94, Comenius University (Faculty of Mathematics and Physics) in Bratislava, 1994. MR 1664813
Reference: [14] J.  Kačur: Solution to strongly nonlinear parabolic problem by a linear approximation scheme.Preprint M2-96, Comenius University (Faculty of Mathematics and Physics) in Bratislava, 1996. MR 1670689
Reference: [15] J. Kačur, A. Handlovičová and M. Kačurová: Solution of nonlinear diffusion problems by linear approximation schemes.SIAM J. Numer. Anal. 30 (1993), 1703–1722. MR 1249039, 10.1137/0730087
Reference: [16] K.  Kiessl: Kapillarer und dampfförmiger Feuchtetransport in mehrschichtlichen Bauteilen.Dissertation, University of Essen, 1983.
Reference: [17] O. Kritscher: Die wissenschaftlichen Grundlagen der Trockungstechnik.Springer-Verlag, Berlin, 1978.
Reference: [18] M. Krus: Feuchtetransport- und Speicherkoeffizienten poröser mineralischer Baustoffen: theoretische Grundlagen und neue Messtechniken.Dissertation, University of Stuttgart, 1995.
Reference: [19] A. Kufner, O. John and S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [20] H. M. Künzel: Rechnerische Untersuchungen des Langzeit-Feuchteverhaltens von Wärmedämmschichten in Umkehrdächern mit Begründung.Research report IBP FtB-23, 1993.
Reference: [21] : MathWorks MATLAB—The Language of Technical Computing, Application Program Interface Guide, Version 5.The MathWorks, Inc., 1998.
Reference: [22] V. G. Maz’ya: Spaces of S. L. Sobolev.Leningrad (St. Petersburg) University Press, 1985. (Russian) MR 0807364
Reference: [23] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations.Teubner-Verlag, Leipzig, 1983. MR 0731261
Reference: [24] M. Pavluš, E. Pavlušová: On the mathematical modelling of the process of the heat and moisture transfer in the porous materials.Research report E11-99-8, Institute of Nuclear Research Dubna (Russia), 1999.
Reference: [25] T. Roubíček: Relaxation in Optimization Theory and Variational Calculus.Walter de Gruyter, Berlin, 1997. MR 1458067
Reference: [26] J. Vala: A comment to the Jäger-Kačur linearization scheme for strongly nonlinear parabolic equations.Appl. Math. 44 (1999), 481–496. MR 1727984, 10.1023/A:1022229022563
Reference: [27] J. Vala: On one mathematical model of creep in superalloys.Appl. Math. 43 (1998), 351–380. Zbl 1042.74511, MR 1644132, 10.1023/A:1022286318503
.

Files

Files Size Format View
AplMat_47-2002-2_9.pdf 442.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo