Previous |  Up |  Next

Article

Title: Development of the kriging method with application (English)
Author: Krejčíř, Pavel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 3
Year: 2002
Pages: 217-230
Summary lang: English
.
Category: math
.
Summary: This paper describes a modification of the kriging method for working with the square root transformation of a spatial random process. We have developed this method for the situation where the spatial process observed is not supposed to be stationary but the assumption is that its square root is a second order stationary spatial random process. Consequently this method is developed for estimating the integral of the process observed and finally some application of the method is given to data from an environmental radioactivity survey. (English)
Keyword: stochastic spatial process
Keyword: second order stationarity
Keyword: kriging
Keyword: prediction
MSC: 62M20
MSC: 62M30
MSC: 62P12
MSC: 62P99
idZBL: Zbl 1091.62097
idMR: MR1900512
DOI: 10.1023/A:1021793304115
.
Date available: 2009-09-22T18:09:57Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134496
.
Reference: [1] M. Asli, D.  Marcotte: Comparison of approaches to spatial estimation in a bivariate context.Mathematical Geology 27 (1995), 641–658. 10.1007/BF02093905
Reference: [2] N. A. C. Cressie: Statistic for Spatial Data.Wiley, New York, 1993. MR 1239641
Reference: [3] P. J. Diggle, R. A. Moyeed and J. A. Tawn: Non-gaussian geostatistics.Research note, Lancaster University, Technical Report MA95 (1996).
Reference: [4] P. J. Diggle, J. A. Tawn and R. A. Moyeed: Model-based geostatistics.J. Roy. Statist. Soc. Ser.  C 47 (1998), 199–350. MR 1626544
Reference: [5] U. C.  Herzfeld, D. F. Merriam: Optimization techniques for integrating spatial data.Mathematical Geology 27 (1995), 559–588. 10.1007/BF02093901
Reference: [6] P. Krejčíř: The Theory and Applications of Spatial Statistics and Stochastic Geometry.PhD thesis, Charles University, Prague (2000).
Reference: [7] R. J. Serfling: Approximation Theorems of Mathematical Statistics.Wiley, New York, 1980. Zbl 0538.62002, MR 0595165
Reference: [8] M. L. Stein: Predicting integrals of random fields using observation an a lattice.Ann. Statist. 23 (1995), 1975–1990. MR 1389861
.

Files

Files Size Format View
AplMat_47-2002-3_1.pdf 510.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo