Previous |  Up |  Next

Article

Title: Steady plane flow of viscoelastic fluid past an obstacle (English)
Author: Novotný, Antonín
Author: Pokorný, Milan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 3
Year: 2002
Pages: 231-254
Summary lang: English
.
Category: math
.
Summary: We consider the steady plane flow of certain classes of viscoelastic fluids in exterior domains with a non-zero velocity prescribed at infinity. We study existence as well as asymptotic behaviour of solutions near infinity and show that for sufficiently small data the solution decays near infinity as fast as the fundamental solution to the Oseen problem. (English)
Keyword: viscoelastic fluid
Keyword: Oseen problem
Keyword: steady transport equation
Keyword: weighted estimates
MSC: 35B40
MSC: 35Q35
MSC: 76D99
idZBL: Zbl 1090.35038
idMR: MR1900513
DOI: 10.1023/A:1021745420954
.
Date available: 2009-09-22T18:10:04Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134497
.
Reference: [1] J. Baranger, C. Guillopé and J. C.  Saut: Mathematical analysis of differential models for viscoelastic fluids.In: Rheology for Polymer Melts Processing, Chapt. II, Elsevier Science, Amsterdam, 1996.
Reference: [2] P.  Dutto: Solutions physiquement raisonnables des équations de Navier-Stokes compressibles stationnaires dans un domaine extérieur du plan.Ph.D. thesis, University of Toulon, 1998.
Reference: [3] R. Farwig, A. Novotný and M. Pokorný: The fundamental solution of a modified Oseen problem.Z.  Anal. Anwendungen 19 (2000), 713–728. MR 1784127, 10.4171/ZAA/976
Reference: [4] G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy, Vol. 38.Springer-Verlag, New York, 1994. MR 1284205
Reference: [5] S. Kračmar, M. Novotný and M. Pokorný: Estimates of Oseen kernels in weighted $L^p$ spaces.Journal of Mathematical Society of Japan 53 (2001), 59–111. MR 1800524, 10.2969/jmsj/05310059
Reference: [6] A. Novotný: About the steady transport equation.In: Proceedings of Fifth Winter School at Paseky, Pitman Research Notes in Mathematics, 1998. MR 1692347
Reference: [7] A.  Novotný: Some Topics in the Mathematical Theory of Compressible Navier-Stokes Equations. Lecture Notes, Lipschitz Vorlesung.Univ. Bonn, to appear.
Reference: [8] A.  Novotný, M. Padula: Physically reasonable solutions to steady Navier-Stokes equations in 3-D exterior domains II ($v_\infty \ne 0$).Math. Ann. 308 (1997), 439–489. MR 1457741, 10.1007/s002080050084
Reference: [9] A.  Novotný, M.  Pokorný: Three-dimensional steady flow of viscoelastic fluid past an obstacle.J.  Math. Fluid Mech. 2 (2000), 294–314. MR 1781917, 10.1007/PL00000956
Reference: [10] M.  Pokorný: Asymptotic behaviour of solutions to certain PDE’s describing the flow of fluids in unbounded domains.Ph.D. thesis, Charles University, Prague & University of Toulon and Var, Toulon-La Garde, 1999.
Reference: [11] M.  Renardy: Existence of slow steady flows of viscoelastic fluid with differential constitutive equations.Z. Angew. Math. Mech. 65 (1985), 449–451. MR 0814684, 10.1002/zamm.19850650919
Reference: [12] D. R.  Smith: Estimates at infinity for stationary solutions of the Navier-Stokes equations in two dimensions.Arch. Rational Mech. Anal. 20 (1965), 341–372. Zbl 0149.44701, MR 0185926, 10.1007/BF00282357
Reference: [13] B. O.  Turesson: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics Vol. 1736.Springer-Verlag, Berlin-Heidelberg, 2000. MR 1774162, 10.1007/BFb0103912
.

Files

Files Size Format View
AplMat_47-2002-3_2.pdf 460.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo