Previous |  Up |  Next

Article

Title: On the motion of rigid bodies in a viscous fluid (English)
Author: Feireisl, Eduard
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 6
Year: 2002
Pages: 463-484
Summary lang: English
.
Category: math
.
Summary: We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects. (English)
Keyword: rigid body
Keyword: compressible fluid
Keyword: incompressible fluid
Keyword: global existence
MSC: 35Q30
MSC: 35Q35
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1090.35137
idMR: MR1948192
DOI: 10.1023/A:1023245704966
.
Date available: 2009-09-22T18:11:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134509
.
Reference: [1] B. Desjardins, M. J. Esteban: Existence of weak solutions for the motion of rigid bodies in a viscous fluid.Arch. Rational Mech. Anal. 146 (1999), 59–71. MR 1682663, 10.1007/s002050050136
Reference: [2] B. Desjardins, M. J. Esteban: On weak solutions for fluid-rigid structure interaction: Compressible and incompressible models.Commun. Partial Differential Equations 25 (2000), 1399–1413. MR 1765138
Reference: [3] R. J.  DiPerna and P.-L.  Lions: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511–547. MR 1022305, 10.1007/BF01393835
Reference: [4] E. Feireisl: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable.Comment. Math. Univ. Carolinae 42 (2001), 83–98. Zbl 1115.35096, MR 1825374
Reference: [5] E. Feireisl: On the motion of rigid bodies in a viscous compressible fluid.Arch. Rational Mech. Anal. (2002) (to appear). MR 1981859
Reference: [6] E. Feireisl: On the motion of rigid bodies in a viscous incompressible fluid.J. Evolution Equations (2002) (to appear). MR 2019028
Reference: [7] E. Feireisl, A. Novotný and H. Petzeltová: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids.J. Math. Fluid Dynamics 3 (2001), 358–392. MR 1867887
Reference: [8] G. P.  Galdi: On the steady self-propelled motion of a body in a viscous incompressible fluid.Arch. Rat. Mech. Anal. 148 (1999), 53–88. MR 1715453, 10.1007/s002050050156
Reference: [9] V. Giovangigli: Multicomponent Flow Modeling.Birkhäuser, Basel, 1999. Zbl 0956.76003, MR 1713516
Reference: [10] M. D.  Gunzburger, H. C.  Lee and A. Seregin: Global existence of weak solutions for viscous incompressible flow around a moving rigid body in three dimensions.J.  Math. Fluid Mech. 2 (2000), 219–266. MR 1781915, 10.1007/PL00000954
Reference: [11] K.-H.  Hoffmann, V. N. Starovoitov: Zur Bewegung einer Kugel in einer zäher Flüssigkeit.TUM-M9618, München, 1996.
Reference: [12] P.-L. Lions: Mathematical Topics in Fluid Dynamics, Vol.2. Compressible models.Oxford Science Publication, Oxford, 1998. MR 1637634
Reference: [13] K. R.  Rajagopal, L. Tao: Mechanics of Mixtures.World Scientific, Singapore, 1995. MR 1370661
Reference: [14] J. A.  San Martin, V. Starovoitov and M. Tucsnak: Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid.Arch. Rational Mech. Anal. 161 (2002), 93–112. MR 1870954
Reference: [15] D. Serre: Chute libre d’un solide dans un fluid visqueux incompressible. Existence.Jap. J.  Appl. Math. 4 (1987), 99–110. MR 0899206, 10.1007/BF03167757
Reference: [16] G. G. Stokes: On the effect of internal friction of fluids on the motion of pendulums.Trans. Cambridge Phil. Soc. 9 (1851), 80–85.
.

Files

Files Size Format View
AplMat_47-2002-6_2.pdf 417.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo