Previous |  Up |  Next

Article

Title: Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence (English)
Author: Rosa, Ricardo M. S.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 6
Year: 2002
Pages: 485-516
Summary lang: English
.
Category: math
.
Summary: Some rigorous results connected with the conventional statistical theory of turbulence in both the two- and three-dimensional cases are discussed. Such results are based on the concept of stationary statistical solution, related to the notion of ensemble average for turbulence in statistical equilibrium, and concern, in particular, the mean kinetic energy and enstrophy fluxes and their corresponding cascades. Some of the results are developed here in the case of nonsmooth boundaries and a less regular forcing term and for arbitrary stationary statistical solutions. (English)
Keyword: Navier-Stokes equations
Keyword: statistical solutions
Keyword: turbulence
Keyword: energy cascade
Keyword: enstrophy cascade
MSC: 35Q30
MSC: 37L40
MSC: 76D05
MSC: 76D06
MSC: 76F05
MSC: 76F20
idZBL: Zbl 1090.76017
idMR: MR1948193
DOI: 10.1023/A:1023297721804
.
Date available: 2009-09-22T18:11:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134510
.
Reference: [1] F.  Abergel: Attractor for a Navier-Stokes flow in an unbounded domain. Attractors, Inertial Manifolds and Their Approximation (Marseille-Luminy, 1987).RAIRO Modél. Math. Anal. Numér. 23 (1989), 359–370. MR 1014477, 10.1051/m2an/1989230303591
Reference: [2] A. V.  Babin: The attractor of a Navier-Stokes system in an unbounded channel-like domain.J.  Dynam. Differential Equations 4 (1992), 555–584. Zbl 0762.35082, MR 1187223, 10.1007/BF01048260
Reference: [3] G.  I. Barenblatt, A. J.  Chorin: New perspectives in turbulence: scaling laws, asymptotics, and intermittency.SIAM Rev. 40 (1998), 265–291. MR 1624102, 10.1137/S0036144597320047
Reference: [4] G. K.  Batchelor: The Theory of Homogeneous Turbulence. Cambridge Monographs on Mechanics and Applied Mathematics.Cambridge University Press, New York, 1953. MR 0052268
Reference: [5] G. K.  Batchelor: Computation of the energy spectrum in homogeneous two-dimensional turbulence.Phys. Fluids Suppl. II 12 (1969), 233–239. Zbl 0217.25801
Reference: [6] H. Bercovici, P.  Constantin, C.  Foias and O. P.  Manley: Exponential decay of the power spectrum of turbulence.J.  Statist. Phys. 80 (1995), 579–602. MR 1342242, 10.1007/BF02178549
Reference: [7] A. J.  Chorin: Vorticity and Turbulence. Applied Mathematical Sciences 103.Springer-Verlag, New York, 1994. MR 1281384
Reference: [8] P.  Constantin: Geometric statistics in turbulence.SIAM Rev. 36 (1994), 73–98. Zbl 0803.35106, MR 1267050, 10.1137/1036004
Reference: [9] P.  Constantin, C.  Foias: Navier-Stokes Equation.University of Chicago Press, Chicago, 1989. MR 0972259
Reference: [10] P.  Constantin, C.  Foias and O.  Manley: Effects of the forcing function spectrum on the energy spectrum in $2$-D turbulence.Phys. Fluids 6 (1994), 427–429. MR 1252844, 10.1063/1.868042
Reference: [11] C.  Foias: Statistical study of Navier-Stokes equations I.Rend. Sem. Mat. Univ. Padova 48 (1972), 219–348.. MR 0352733
Reference: [12] C.  Foias: Statistical study of Navier-Stokes equations II.Rend. Sem. Mat. Univ. Padova 49 (1973), 9–123. Zbl 0283.76018
Reference: [13] C.  Foias, M. S.  Jolly, O. P.  Manley and R. Rosa: Statistical estimates for the Navier-Stokes equations and the Kraichnan theory of 2-D fully developed turbulence.J.  Statist. Phys. 108 (2002), 591–646. MR 1914189, 10.1023/A:1015782025005
Reference: [14] C.  Foias, O. P.  Manley, R.  Rosa and R.  Temam: Navier-Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, Vol.  83.Cambridge University Press, Cambridge, 2001. MR 1855030
Reference: [15] C.  Foias, O. P.  Manley, R.  Rosa and R.  Temam: Cascade of energy in turbulent flows.C. R. Acad. Sci.  Paris, Série  I Math. 332 (2001), 509–514. MR 1834060
Reference: [16] C.  Foias, O. P.  Manley, R.  Rosa and R.  Temam: Estimates for the energy cascade in three-dimensional turbulent flows.C.  R.  Acad. Sci. Paris, Série  I Math. 333 (2001), 499–504. MR 1859244, 10.1016/S0764-4442(01)02008-0
Reference: [17] C.  Foias, G.  Prodi: Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension  $2$.Rend. Sem. Mat. Univ. Padova 39 (1967), 1–34. MR 0223716
Reference: [18] S.  Friedlander, L.  Topper: Turbulence. Classic Papers on Statistical Theory.Interscience Publisher, New York, 1961. MR 0118165
Reference: [19] U.  Frisch: Turbulence. The Legacy of A. N. Kolmogorov.Cambridge University Press, Cambridge, 1995. Zbl 0832.76001, MR 1428905
Reference: [20] J. O.  Hinze: Turbulence. McGraw-Hill Series in Mechanical Engineering.McGraw-Hill, New York, 1975.
Reference: [21] P.  Holmes, J.  L.  Lumley and G.  Berkooz: Turbulence, Coherent Structures, Dynamical Systems, and Symmetry.Cambridge University Press, Cambridge, 1996. MR 1422658
Reference: [22] E.  Hopf: Statistical hydromechanics and functional calculus.J.  Rat. Mech. Analysis 1 (1952), 87–123. Zbl 0049.41704, MR 0059119
Reference: [23] A.  A.  Ilyin: Attractors for Navier-Stokes equations in domains with finite measure.Nonlinear Anal. 27 (1996), 605–616. Zbl 0859.35090, MR 1396032, 10.1016/0362-546X(95)00112-9
Reference: [24] J.  Jiménez, A.  A.  Wray, P.  G.  Saffman and R. S.  Rogallo: The structure of intense vorticity in isotropic turbulence.J.  Fluid Mech. 255 (1993), 65–90. MR 1244224, 10.1017/S0022112093002393
Reference: [25] T.  von Karman, L.  Howarth: On the statistical theory of isotropic turbulence.Proc. Roy. Soc. London A164, 1938, pp. 192–215.
Reference: [26] A.  N.  Kolmogorov: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.C. R.  (Dokl.) Acad. Sci. URSS 30 (1941), 301–305. MR 0004146
Reference: [27] A. N.  Kolmogorov: On degeneration of isotropic turbulence in an incompressible viscous liquid.C. R.  (Dokl.) Acad. Sci. URSS 31 (1941), 538–540. MR 0004568
Reference: [28] A. N.  Kolmogorov: Dissipation of energy in locally isotropic turbulence.C. R.  (Doklady) Acad. Sci. URSS 32 (1941), 16–18. MR 0005851
Reference: [29] A. N.  Kolmogorov: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number.J.  Fluid Mech. 13 (1962), 82–85. Zbl 0112.42003, MR 0139329, 10.1017/S0022112062000518
Reference: [30] R. H.  Kraichnan: Inertial ranges in two-dimensional turbulence.Phys. Fluids 10 (1967), 1417–1423. 10.1063/1.1762301
Reference: [31] R. H.  Kraichnan: Some modern developments in the statistical theory of turbulence.Statistical Mechanics: New Concepts, New Problems, New Applications, S.  A.  Rice, K. F.  Freed and J. C.  Light (eds.), 1972, pp. 201–227.
Reference: [32] O.  Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow. Revised English edition.Gordon and Breach Science Publishers, New York-London-Paris, 1963. MR 0155093
Reference: [33] O.  Ladyzhenskaya: First boundary value problem for the Navier-Stokes equations in domains with non smooth boundaries.C.  R.  Acad. Sci. Paris, Sér. I Math. 314 (1992), 253–258. Zbl 0744.35034, MR 1151709
Reference: [34] L.  Landau, E.  Lifchitz: Mécanique des Fluides, Physique Théorique, Tome 6.Editions Mir, Moscow, 1971.
Reference: [35] C. E.  Leith: Diffusion approximation for two-dimensional turbulence.Phys. Fluids 11 (1968), 671–673. 10.1063/1.1691968
Reference: [36] M.  Lesieur: Turbulence in Fluids. Third edition. Fluid Mechanics and its Applications,  40.Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1447438
Reference: [37] J.-L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [38] I.  Moise, R.  Rosa and X.  Wang: Attractor for noncompact semigroups via energy equations.Nonlinearity 11 (1998), 1369–1393. MR 1644413, 10.1088/0951-7715/11/5/012
Reference: [39] A. S.  Monin, A. M.  Yaglom: Statistical Fluid Mechanics: Mechanics of Turbulence 2.MIT Press, Cambridge, 1975.
Reference: [40] E. A.  Novikov, R. V.  Stewart: The intermittency of turbulence and the spectrum of energy dissipation.Izv. Akad. Nauk SSSR, Ser. Geoffiz 3 (1964), 408–413.
Reference: [41] A. M.  Obukhoff: On the energy distribution in the spectrm of turbulent flow.C. R. (Dokl.) Acad. Sci. USSR 32 (1941), 19–21. MR 0005852
Reference: [42] A. M.  Obukhoff: Some specific features of atmospheric turbulence.J.  Fluid Mech. 13 (1962), 77–81. MR 0139328, 10.1017/S0022112062000506
Reference: [43] L. F.  Richardson: Weather Prediction by Numerical Process.Cambridge University Press, Cambridge, 1922. MR 2358797
Reference: [44] R.  Rosa: The global attractor for the 2D Navier-Stokes flow on some unbounded domains.Nonlinear Anal. 32 (1998), 71–85. Zbl 0901.35070, MR 1491614
Reference: [45] Z. S.  She, E.  Jackson and S. A.  Orszag: Structure and dynamics of homogeneous turbulence: models and simulations.Proc. Roy. Soc. London Ser.  A 434 (), 101–124.
Reference: [46] G. I. Taylor: Diffusion by continuous movements.Proc. London Math. Soc. Ser. 2 20 (1921), 196–211.
Reference: [47] G. I.  Taylor: Statistical theory of turbulence.Proc. Roy. Soc. London Ser. A 151 (1935), 421–478.
Reference: [48] G. I.  Taylor: The spectrum of turbulence.Proc. Roy. Soc. London Ser. A 164 (1938), 476–490.
Reference: [49] R. Temam: Navier-Stokes Equations. Theory and numerical analysis. Studies in Mathematics and its Applications, 2. 3rd edition.North-Holland Publishing Co., Amsterdam-New York, 1984. Reedition in 2001 in the AMS Chelsea series, AMS, Providence. MR 0769654
Reference: [50] H.  Tennekes, J. L.  Lumley: A First Course in Turbulence.MIT Press, Cambridge, Mass., 1972.
Reference: [51] C. V.  Tran, T. G.  Shepherd: Constraints on the spectral distribution of energy and enstrophy dissipation in forced two-dimensional turbulence.Physica D (to appear). MR 1910295
Reference: [52] M. I.  Vishik, A. V.  Fursikov: Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations.Sibirsk. Mat. Zh. 19 (1978), 1005–1031. MR 0508497
Reference: [53] M. I.  Vishik, A. V.  Fursikov: Mathematical Problems of Statistical Hydrodynamics.Kluwer, Dordrecht, 1988.
.

Files

Files Size Format View
AplMat_47-2002-6_3.pdf 502.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo