Previous |  Up |  Next

Article

Title: Numerical methods for fourth order nonlinear degenerate diffusion problems (English)
Author: Becker, Jürgen
Author: Grün, Günther
Author: Lenz, Martin
Author: Rumpf, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 6
Year: 2002
Pages: 517-543
Summary lang: English
.
Category: math
.
Summary: Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant), the coupling of the thin film equation with an evolution equation for the surfactant density has to be considered. Discretizing the arising nonlinearities in a subtle way enables us to establish discrete counterparts of the essential integral estimates found in the continuous setting. As a consequence, the resulting algorithms are efficient, and results on convergence and nonnegativity or even strict positivity of discrete solutions follow in a natural way. The paper presents a finite element and a finite volume scheme and compares both approaches. Furthermore, an overview over qualitative properties of solutions is given, and various applications show the potential of the proposed approach. (English)
Keyword: thin film
Keyword: fourth order degenerate parabolic equation
Keyword: nonnegativity preserving scheme
Keyword: surfactant driven flow
Keyword: finite element method
Keyword: finite volume method
MSC: 35K35
MSC: 35K55
MSC: 35K65
MSC: 65M12
MSC: 65M50
MSC: 65M60
MSC: 76D08
idZBL: Zbl 1090.35086
idMR: MR1948194
DOI: 10.1023/B:APOM.0000034537.55985.44
.
Date available: 2009-09-22T18:11:44Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134511
.
Reference: [1] J. W.  Barrett, J. F.  Blowey and H. Garcke: Finite element approximation of a fourth order nonlinear degenerate parabolic equation.Numer. Math. 80 (1998), 525–556. MR 1650035, 10.1007/s002110050377
Reference: [2] J. W.  Barrett, J. F.  Blowey and H. Garcke: On fully practical finite element approximations of degenerate Cahn-Hilliard systems.Math. Model. Num. Anal. 35 (2001), 713–748. MR 1863277, 10.1051/m2an:2001133
Reference: [3] J. Becker: Finite-Elemente-Verfahren zur Dünne-Filme-Gleichung mit nichtlinearem Oberflächenspannungsterm.Diplomarbeit, Universität Bonn, 2000.
Reference: [4] J. Becker, G. Grün: Numerical schemes for the thin film equation with nonlinear surface tension term.In preparation.
Reference: [5] E. Beretta, M. Bertsch and R. Dal Passo: Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation.Arch. Rational Mech. Anal. 129 (1995), 175–20. MR 1328475, 10.1007/BF00379920
Reference: [6] F. Bernis: Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems.Free Boundary Problems: Theory and Applications. Pitman Research Notes in Mathematics 323, J. I. Diaz, M. A. Herrero, A. Linan and J. L. Vazquez (eds.), Longman, Harlow, 1995, pp. 40–56. Zbl 0839.35102, MR 1342325
Reference: [7] F. Bernis: Finite speed of propagation and continuity of the interface for thin viscous flows.Adv. Differential Equations 1 (1996), 337–368. Zbl 0846.35058, MR 1401398
Reference: [8] F. Bernis: Finite speed of propagation for thin viscous flows when $2\le n<3$.C. R.  Acad. Sci. Paris Sér. I Math. 322 (1996), 1169–1174. MR 1396660
Reference: [9] F. Bernis, A. Friedman: Higher order nonlinear degenerate parabolic equations.J.  Differential Equations 83 (1990), 179–206. MR 1031383, 10.1016/0022-0396(90)90074-Y
Reference: [10] A. L.  Bertozzi, M. Pugh: The lubrication approximation for thin viscous films: Regularity and long time behaviour of weak solutions.Nonlin. Anal. 18 (1992), 217–234.
Reference: [11] M. Bertsch, R. Dal Passo, H. Garcke and G. Grün: The thin viscous flow equation in higher space dimensions.Adv. Differential Equ. 3 (1998), 417–440. MR 1751951
Reference: [12] Ph. G.  Ciarlet: The Finite Element Method for Elliptic Problems.North Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [13] R. Dal Passo, H. Garcke and G. Grün: On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions.SIAM J.  Math. Anal. 29 (1998), 321–342. MR 1616558, 10.1137/S0036141096306170
Reference: [14] C. M.  Elliott, H. Garcke: On the Cahn-Hilliard equation with degenerate mobility.SIAM J. Math. Anal. 27 (1996), 404–423. MR 1377481, 10.1137/S0036141094267662
Reference: [15] B. Engquist, S. Osher: One-sided difference approximations for nonlinear conservation laws.Math. Comp. 31 (1981), 321–351. MR 0606500
Reference: [16] R. Eymard, M. Gutnic and D. Hilhorst: The finite volume method for the Richards equation.Computational Geosciences 3 (1999), . MR 1750075
Reference: [17] L. Giacomelli, F. Otto: Droplet spreading: intermediate scaling law by pde methods.Comm. Pure Appl. Math. 55 (2002), 217–254. MR 1865415, 10.1002/cpa.10017
Reference: [18] G. Grün: On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions.Math. Comp (to appear). MR 1972735
Reference: [19] G. Grün: Degenerate parabolic equations of fourth order and a plasticity model with nonlocal hardening.Z.  Anal. Anwendungen 14 (1995), 541–573. MR 1362530, 10.4171/ZAA/639
Reference: [20] G. Grün: On free boundary problems arising in thin film flow.Habilitationsschrift, Universität Bonn, 2001.
Reference: [21] G. Grün: Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the multi-dimensional case.Interfaces and Free Boundaries 4 (2002), 309–323. Zbl 1056.35072, MR 1914626
Reference: [22] G. Grün: Droplet spreading under weak slippage: a basic result on finite speed of propagation.Submitted,  (2002). MR 1969611
Reference: [23] G. Grün: On the numerical simulation of wetting phenomena.In: Proceedings of the 15th GAMM-Seminar Kiel, Numerical Methods of Composite Materials, W. Hackbusch, S. Sauter (eds.), Vieweg-Verlag, Braunschweig. To appear. MR 0993361
Reference: [24] G. Grün, M. Lenz, M. Rumpf: A finite volume scheme for surfactant driven thin film flow.Finite volumes for complex applications III, R. Herbin, D. Kröner (eds.), Hermes Penton Sciences, 2002, pp. 567–574. MR 2008981
Reference: [25] G. Grün, M. Rumpf: Nonnegativity preserving convergent schemes for the thin film equation.Numer. Math. 87 (2000), 113–152. MR 1800156, 10.1007/s002110000197
Reference: [26] G. Grün, M. Rumpf: Simulation of singularities and instabilities arising in thin film flow.European J.  Appl. Math. 12 (2001), 293–320. MR 1936040, 10.1017/S0956792501004429
Reference: [27] O. E. Jensen, J. B.  Grotberg: Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture.J.  Fluid Mech. 240 (1992), 259–288. MR 1175090, 10.1017/S0022112092000090
Reference: [28] D. Kröner: Numerical Schemes for Conservation Laws. Willey-Teubner Series Advances in Numerical Mathematics.Willey-Teubner, Chichester-Stuttgart, 1997. MR 1437144
Reference: [29] M. Lenz: Finite Volumen Methoden für degenerierte parabolische Systeme—Ausbreitung eines Surfactant auf einem dünnen Flüssigkeitsfilm.Diplomarbeit, Universität Bonn, 2002.
Reference: [30] K. Mikula, N. Ramarosy: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing.Numer. Math. 89 (2001), 561–590. MR 1864431, 10.1007/PL00005479
Reference: [31] A. Oron, S. H. Davis and S. G. Bankoff: Long-scale evolution of thin liquid films.Rev. of Mod. Phys. 69 (1997), 931–980. 10.1103/RevModPhys.69.931
Reference: [32] L. Zhornitskaya, A. L.  Bertozzi: Positivity preserving numerical schemes for lubrication-type equations.SIAM J.  Numer. Anal. 37 (2000), 523–555. MR 1740768
.

Files

Files Size Format View
AplMat_47-2002-6_4.pdf 6.131Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo