Previous |  Up |  Next

Article

Keywords:
Navier-Stokes equations; partial regularity
Summary:
We present a simplified proof of a theorem proved recently concerning the number of singular points of weak solutions to the Navier-Stokes equations. If a weak solution ${\mathbf u}$ belongs to $L^\infty (0,T,L^3(\Omega )^3)$, then the set of all possible singular points of ${\mathbf u}$ in $\Omega $ is at most finite at every time $t_0\in (0,T)$.
References:
[1] L. Caffarelli, R. Kohn and L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), 771–831. DOI 10.1002/cpa.3160350604 | MR 0673830
[2] H. Kozono: Uniqueness and regularity of weak solutions to the Navier-Stokes equations. Lecture Notes Numer. Appl. Anal. 16 (1998), 161–208. MR 1616331 | Zbl 0941.35065
[3] H. Kozono, H. Sohr: Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis 16 (1996), 255–271. MR 1403221
[4] J. Neustupa: Partial regularity of weak solutions to the Navier-Stokes equations in the class $L^\infty (0,T,L^3(\Omega )^3)$. J. Math. Fluid Mech. 1 (1999), 309–325. DOI 10.1007/s000210050013 | MR 1738173
[5] Y. Taniuchi: On generalized energy inequality of the Navier-Stokes equations. Manuscripta Math. 94 (1997), 365–384. DOI 10.1007/BF02677860 | MR 1485443
[6] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford, 1977. MR 0769654 | Zbl 0383.35057
Partner of
EuDML logo