Previous |  Up |  Next

Article

Keywords:
a posteriori error estimates; finite elements; nonlinear parabolic problems; effectivity index; singly implicit Runge-Kutta methods (SIRK)
Summary:
A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.
References:
[1] A.  Adjerid, J. E.  Flaherty and Y. J.  Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems. Numer. Math. 65 (1993), 1–21. DOI 10.1007/BF01385737 | MR 1217436
[2] J. C.  Butcher: A transformed implicit Runge-Kutta method. J. Assoc. Comput. Mach. 26 (1979), 731–738. DOI 10.1145/322154.322163 | MR 0545546 | Zbl 0439.65057
[3] K.  Burrage: A special family of Runge-Kutta methods for solving stiff differential equations. BIT 18 (1978), 22–41. DOI 10.1007/BF01947741 | MR 0483458 | Zbl 0384.65034
[4] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978. MR 0520174 | Zbl 0383.65058
[5] S.  Fučík, A.  Kufner: Nonlinear Differential Equations. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980. MR 0558764
[6] H. Gajevski, K.  Gröger and K.  Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. MR 0636412
[7] I. Hlaváček, M. Křížek and J.  Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189. DOI 10.1006/jmaa.1994.1192 | MR 1275952
[8] S. Larsson, V. Thomée and N. Y.  Zhang: Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci. 11 (1989), 105–124. DOI 10.1002/mma.1670110108 | MR 0973559
[9] P. K.  Moore: A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31 (1994), 149–169. DOI 10.1137/0731008 | MR 1259970 | Zbl 0798.65089
[10] P. K.  Moore, J. E.  Flaherty: High-order adaptive solution of parabolic equations  I. Singly implicit Runge-Kutta methods and error estimation. Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991.
[11] P. K.  Moore, J. E.  Flaherty: High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations. BIT 33 (1993), 309–331. DOI 10.1007/BF01989753 | MR 1326022
[12] T. Roubíček: Nonlinear differential equations and inequalities. Mathematical Institute of Charles University, Prague, in preparation.
[13] K.  Segeth: A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension. Numer. Math. 33 (1999), 455–475. DOI 10.1007/s002110050459 | MR 1715561 | Zbl 0936.65113
[14] B.  Szabó, I.  Babuška: Finite Element Analysis. John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991. MR 1164869
[15] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, 1997. MR 1479170
Partner of
EuDML logo