Previous |  Up |  Next


constitutive relations; constraint; Lagrange multiplier; Helmholtz potential; rate of dissipation; elasticity; inelasticity; viscoelasticity
In classical constitutive models such as the Navier-Stokes fluid model, and the Hookean or neo-Hookean solid models, the stress is given explicitly in terms of kinematical quantities. Models for viscoelastic and inelastic responses on the other hand are usually implicit relationships between the stress and the kinematical quantities. Another class of problems wherein it would be natural to develop implicit constitutive theories, though seldom resorted to, are models for bodies that are constrained. In general, for such materials the material moduli that characterize the extra stress could depend on the constraint reaction. (E.g., in an incompressible fluid, the viscosity could depend on the constraint reaction associated with the constraint of incompressibility. In the linear case, this would be the pressure.) Here we discuss such implicit constitutive theories. We also discuss a class of bodies described by an implicit constitutive relation for the specific Helmholtz potential that depends on both the stress and strain, and which does not dissipate in any admissible process. The stress in such a material is not derivable from a potential, i.e., the body is not hyperelastic (Green elastic).
[1] G.  Amontons: De la résistance causée dans les machines. Mémoires de l’ Académie Royale  A  (1699), 257–282.
[2] E. C.  Andrade: Viscosity of liquids. Nature 125 (1930), 309–310. DOI 10.1038/125309b0
[3] B. Bernstein: A unified theory of elasticity and plasticity. Internat. J. Engrg. Sci. 15 (1977), 645–660. DOI 10.1016/0020-7225(77)90016-7 | MR 0667196 | Zbl 0364.73017
[4] B. Bernstein: Hypo-elasticity and elasticity. Arch. Rational Mech. Anal. 6 (1960), 89–104. DOI 10.1007/BF00276156 | MR 0118016 | Zbl 0094.36702
[5] P. Bridgman: The Physics of High Pressure. The MacMillan Company, New York, 1931.
[6] C. A. Coulomb: Theories des machines simples, en ayant égard au frottement de leurs parties, et a la roider des cordages. Mém. Math. Phys. X (1785), 161–332.
[7] J. d’Alembert: Traité de Dynamique. Paris, Chez David, Libraire, 1758.
[8] C.  Eckart: The thermodynamics of irreversible processes IV. The theory of elasticity and inelasticity. Physical Rev. 73 (1948), 373–382. DOI 10.1103/PhysRev.73.373 | MR 0023698
[9] M. Franta, J. Málek and K. R. Rajagopal: On steady flows of fluids and shear dependent viscosities. Proc. Roy. Soc. London Ser. A: Mathematical, Physical and Engineering Sciences (2003), Submitted. MR 2121929
[10] C. F.  Gauss: On a new general principle of mechanics. 8 (1830), 137–140;.
[11] H. Goldstein: Classical Mechanics. Addison-Wesley, Boston, 1980. MR 0575343 | Zbl 0491.70001
[12] J.  Hron, J. Málek and K. R. Rajagopal: Simple flows of fluids with pressure dependent viscosities. Proc. Roy. Soc. London Ser.  A: Mathematical, Physical and Engineering Sciences 457 (2001), 1603–1622.
[13] K.  Kannan, K. R.  Rajagopal: A thermomechanical framework for the transition of a viscoelastic liquid to a viscoelastic solid. Mathematics and Mechanics of Solids (to appear). MR 2053023
[14] K.  Kannan, I.  Rao and K. R.  Rajagopal: A thermomechanical framework for the glass transition phenomenon in certain polymers and its application to the fiber spinning problems. J.  of Rheology 46 (2002), 977–999. DOI 10.1122/1.1485281
[15] J. L.  Lagrange: Mécanique Analytique. Mme Ve Courcier, Paris, 1787, Translation (by A. Boissonnade, V. N.  Vagliente), Kluwer Academic Publishers, Dordrecht, 1997. MR 1784335
[16] M.  Levy: Mémoire sur les équations générales des mouvements intérieurs des corps ductiles au delà des limites en élasticité pourrait les ramener à leur premier état. C. R. Acad. Sci. 70 (1870), 1323–1325.
[17] J. Málek, J. Nečas and K. R. Rajagopal: Global analysis of the flows of fluids with pressure dependent viscosities. Arch. Rational Mech. Anal. 165 (2002), 243–269. DOI 10.1007/s00205-002-0219-4 | MR 1941479
[18] J. C.  Maxwell: On the Dynamical Theory of Gases. Philosophical Transactions of the Royal Society of London, Series A  (1866), 26–78.
[19] A. J. A. Morgan: Some properties of media by constitutive equations in implicit form. Internat. J. Engrg. Sci. 4 (1966), 155–178. DOI 10.1016/0020-7225(66)90021-8 | MR 0195307
[20] J.  Murali Krishnan, K. R.  Rajagopal: A thermodynamic framework for the constitutive modeling of asphalt concrete: theory and aplications. ASCE Journal of Materials, Accepted for publication.
[21] C. L. M. H.  Navier: Mémoire sur les lois du mouvement des fluides. Mém. Acad. Re. Sci., Paris 6 (1823), 389–416.
[22] W.  Noll: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2 (1958), 197–226. DOI 10.1007/BF00277929 | MR 0105862 | Zbl 0083.39303
[23] W.  Noll: A new mathematical theory of simple materials. Arch. Rational Mech. Anal. 48 (1972), 1–50. DOI 10.1007/BF00253367 | MR 0445985 | Zbl 0271.73006
[24] S. D.  Poisson: Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. Journal de l’Ecole Polytechnique 13 (1831), 1–174.
[25] L.  Prandtl: Spannungsverteilung in plastischen Körpern. In: Proceeding of the 1st International Congress in Applied Mechanics, Delft, 1924.
[26] K. R.  Rajagopal, A. S.  Wineman: On constitutive equations for branching of response with selectivity. Internat. J. Non-Linear Mech. 15 (1980), 83–91. DOI 10.1016/0020-7462(80)90002-5 | MR 0580724
[27] K. R.  Rajagopal, A. S. Wineman: A constitutive equation for nonlinear solids which undergo deformation induced micro-structural changes. International Journal of Plasticity 8 (1992), 385–395. DOI 10.1016/0749-6419(92)90056-I
[28] K. R.  Rajagopal: Multiple configurations in Continuum Mechanics. Report  6, Institute of Computational and Applied Mechanics, University of Pittsburgh, 1995.
[29] K. R.  Rajagopal, A. R.  Srinivasa: On the inelastic behavior of solids—Part  I: Twinning. International Journal of Plasticity 11 (1995), 653–678.
[30] K. R.  Rajagopal, A. R.  Srinivasa: On the inelastic behavior of solids—Part  II: Energetics associated with discontinuous deformation twinning. International Journal of Plasticity 13 (1997), 1–35. DOI 10.1016/S0749-6419(96)00049-6
[31] K. R.  Rajagopal, A. S.  Wineman: A linearized theory for materials undergoing microstructural change. ARI 51 (1998), 160–168. DOI 10.1007/s007770050049
[32] K. R.  Rajagopal, A. R. Srinivasa: Mechanics of the inelastic behavior of materials—Part  I: Theoretical underpinnings. International Journal of Plasticity 14 (1998), 945–967. DOI 10.1016/S0749-6419(98)00037-0
[33] K. R.  Rajagopal, A. R.  Srinivasa: Mechanics of the inelastic behavior of materials—Part  II: Inelastic response. International Journal of Plasticity 14 (1998), 969–995. DOI 10.1016/S0749-6419(98)00041-2
[34] K. R.  Rajagopal, A. R. Srinivasa: Thermomechanical modeling of shape memory alloys. ZAMP 50 (1999), 459–496. DOI 10.1007/s000330050028 | MR 1697717
[35] K. R.  Rajagopal, A. R.  Srinivasa: A thermodynamic framework for rate type fluid models. Journal of Non-Newtonian Fluid Mechanics 88 (2000), 207–227. DOI 10.1016/S0377-0257(99)00023-3
[36] K. R.  Rajagopal, A. R. Srinivasa: Modeling anistropic fluids within the framework of bodies with multiple natural configurations. Journal of Non-Newtonian Fluid Mechanics (2001), .
[37] K. R.  Rajagopal, L. Tao: Modeling of the microwave drying process of aqueous dielectrics. ZAMP 53 (2002), 923–948. DOI 10.1007/PL00012620 | MR 1963544
[38] I. J.  Rao, K. R.  Rajagopal: A study of strain-induced crystallization of polymers. International Journal of Solids and Structures 38 (2001), 1149–1167. DOI 10.1016/S0020-7683(00)00079-2
[39] I. J. Rao, J. D. Humphrey and K. R. Rajagopal: Growth and remodeling in a dynamically loaded axial tissue. Computational Method in Engineering Science, In press.
[40] I. J.  Rao, K. R.  Rajagopal: Phenomenological modeling of polymer crystallization using the notion of multiple natural configurations. Interfaces and free boundaries 2 (2000), 73–94. MR 1759500
[41] I. J.  Rao, K. R. Rajagopal: A thermomechanical framework for crystallization of polymers. Z.  Angew. Math. Phys. 53 (2002), 365–406. DOI 10.1007/s00033-002-8161-8 | MR 1910337
[42] E.  Reuss: Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. Z. Angew. Math. Mech. 10 (1939), 266–274. DOI 10.1002/zamm.19300100308
[43] A. J. C. B.  Saint-Venant: Note à joindre au Mémoire sur la dynamique des fluides. C.  R.  Acad. Sci. 17 (1843), 1240–1243.
[44] A. J. M.  Spencer: Continuum Physics, Vol.  3. A. C. Eringen (ed.), Academic Press, New York, 1975. MR 0468444
[45] A. R.  Srinivasa, K. R.  Rajagopal and R.  Armstrong: A phenomenological model of twinning based on dual reference structures. Acta. Metall. (1998), 1–14.
[46] G. G.  Stokes: On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society 8 (1845), 287–305.
[47] H. E.  Tresca: On the ‘flow of solids’ with the practical application in some forgings. In: Proceedings of the Institution of Mechanical Engineers, London, 1867, pp. 114–150.
[48] C.  Truesdell: A First Course in Rational Continuum Mechanics. Academic Press, Boston-San Diego, 1991. MR 1162744 | Zbl 0866.73001
[49] C. A.  Truesdell: Hypo-elasticity. J.  Rational Mechanics and Analysis 4 (1955), 323–425. MR 0068412 | Zbl 0064.42002
[50] C.  Truesdell, W.  Noll: The Non-Linear Field Theories of Mechanics. Handbuch der Physik, $III_3$. Springer-Verlag, Berlin-Heidelberg-New York, 1965. MR 0193816
[51] R. von Mises: Mechanik der festen Körpern im plastisch-deformablen Zustand. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse (1913), 582–592.
[52] A. S.  Wineman, K. R.  Rajagopal: On a constitutive theory for materials undergoing microstructural changes. Archives of Mechanics 42 (1990), 53–74. MR 1108245
[53] H.  Ziegler: Some extremum principles in irreversible thermodynamics. In: Progress in Solid Mechanics, I. Sneddon, R.  Hill (eds.), North-Holland Publishing Company, Amsterdam, 1963. MR 0163470
Partner of
EuDML logo