Previous |  Up |  Next

Article

Title: On implicit constitutive theories (English)
Author: Rajagopal, K. R.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 4
Year: 2003
Pages: 279-319
Summary lang: English
.
Category: math
.
Summary: In classical constitutive models such as the Navier-Stokes fluid model, and the Hookean or neo-Hookean solid models, the stress is given explicitly in terms of kinematical quantities. Models for viscoelastic and inelastic responses on the other hand are usually implicit relationships between the stress and the kinematical quantities. Another class of problems wherein it would be natural to develop implicit constitutive theories, though seldom resorted to, are models for bodies that are constrained. In general, for such materials the material moduli that characterize the extra stress could depend on the constraint reaction. (E.g., in an incompressible fluid, the viscosity could depend on the constraint reaction associated with the constraint of incompressibility. In the linear case, this would be the pressure.) Here we discuss such implicit constitutive theories. We also discuss a class of bodies described by an implicit constitutive relation for the specific Helmholtz potential that depends on both the stress and strain, and which does not dissipate in any admissible process. The stress in such a material is not derivable from a potential, i.e., the body is not hyperelastic (Green elastic). (English)
Keyword: constitutive relations
Keyword: constraint
Keyword: Lagrange multiplier
Keyword: Helmholtz potential
Keyword: rate of dissipation
Keyword: elasticity
Keyword: inelasticity
Keyword: viscoelasticity
MSC: 74A20
MSC: 74C99
MSC: 74D10
MSC: 76A02
MSC: 76A05
MSC: 76A10
idZBL: Zbl 1099.74009
idMR: MR1994378
DOI: 10.1023/A:1026062615145
.
Date available: 2009-09-22T18:14:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134533
.
Reference: [1] G.  Amontons: De la résistance causée dans les machines.Mémoires de l’ Académie Royale  A  (1699), 257–282.
Reference: [2] E. C.  Andrade: Viscosity of liquids.Nature 125 (1930), 309–310. 10.1038/125309b0
Reference: [3] B. Bernstein: A unified theory of elasticity and plasticity.Internat. J. Engrg. Sci. 15 (1977), 645–660. Zbl 0364.73017, MR 0667196, 10.1016/0020-7225(77)90016-7
Reference: [4] B. Bernstein: Hypo-elasticity and elasticity.Arch. Rational Mech. Anal. 6 (1960), 89–104. Zbl 0094.36702, MR 0118016, 10.1007/BF00276156
Reference: [5] P. Bridgman: The Physics of High Pressure.The MacMillan Company, New York, 1931.
Reference: [6] C. A. Coulomb: Theories des machines simples, en ayant égard au frottement de leurs parties, et a la roider des cordages.Mém. Math. Phys. X (1785), 161–332.
Reference: [7] J. d’Alembert: Traité de Dynamique.Paris, Chez David, Libraire, 1758.
Reference: [8] C.  Eckart: The thermodynamics of irreversible processes IV. The theory of elasticity and inelasticity.Physical Rev. 73 (1948), 373–382. MR 0023698, 10.1103/PhysRev.73.373
Reference: [9] M. Franta, J. Málek and K. R. Rajagopal: On steady flows of fluids and shear dependent viscosities.Proc. Roy. Soc. London Ser. A: Mathematical, Physical and Engineering Sciences (2003), Submitted. MR 2121929
Reference: [10] C. F.  Gauss: On a new general principle of mechanics. 8 (1830), 137–140;.
Reference: [11] H. Goldstein: Classical Mechanics.Addison-Wesley, Boston, 1980. Zbl 0491.70001, MR 0575343
Reference: [12] J.  Hron, J. Málek and K. R. Rajagopal: Simple flows of fluids with pressure dependent viscosities.Proc. Roy. Soc. London Ser.  A: Mathematical, Physical and Engineering Sciences 457 (2001), 1603–1622.
Reference: [13] K.  Kannan, K. R.  Rajagopal: A thermomechanical framework for the transition of a viscoelastic liquid to a viscoelastic solid.Mathematics and Mechanics of Solids (to appear). MR 2053023
Reference: [14] K.  Kannan, I.  Rao and K. R.  Rajagopal: A thermomechanical framework for the glass transition phenomenon in certain polymers and its application to the fiber spinning problems.J.  of Rheology 46 (2002), 977–999. 10.1122/1.1485281
Reference: [15] J. L.  Lagrange: Mécanique Analytique.Mme Ve Courcier, Paris, 1787, Translation (by A. Boissonnade, V. N.  Vagliente), Kluwer Academic Publishers, Dordrecht, 1997. MR 1784335
Reference: [16] M.  Levy: Mémoire sur les équations générales des mouvements intérieurs des corps ductiles au delà des limites en élasticité pourrait les ramener à leur premier état.C. R. Acad. Sci. 70 (1870), 1323–1325.
Reference: [17] J. Málek, J. Nečas and K. R. Rajagopal: Global analysis of the flows of fluids with pressure dependent viscosities.Arch. Rational Mech. Anal. 165 (2002), 243–269. MR 1941479, 10.1007/s00205-002-0219-4
Reference: [18] J. C.  Maxwell: On the Dynamical Theory of Gases.Philosophical Transactions of the Royal Society of London, Series A  (1866), 26–78.
Reference: [19] A. J. A. Morgan: Some properties of media by constitutive equations in implicit form.Internat. J. Engrg. Sci. 4 (1966), 155–178. MR 0195307, 10.1016/0020-7225(66)90021-8
Reference: [20] J.  Murali Krishnan, K. R.  Rajagopal: A thermodynamic framework for the constitutive modeling of asphalt concrete: theory and aplications.ASCE Journal of Materials, Accepted for publication.
Reference: [21] C. L. M. H.  Navier: Mémoire sur les lois du mouvement des fluides.Mém. Acad. Re. Sci., Paris 6 (1823), 389–416.
Reference: [22] W.  Noll: A mathematical theory of the mechanical behavior of continuous media.Arch. Rational Mech. Anal. 2 (1958), 197–226. Zbl 0083.39303, MR 0105862, 10.1007/BF00277929
Reference: [23] W.  Noll: A new mathematical theory of simple materials.Arch. Rational Mech. Anal. 48 (1972), 1–50. Zbl 0271.73006, MR 0445985, 10.1007/BF00253367
Reference: [24] S. D.  Poisson: Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides.Journal de l’Ecole Polytechnique 13 (1831), 1–174.
Reference: [25] L.  Prandtl: Spannungsverteilung in plastischen Körpern.In: Proceeding of the 1st International Congress in Applied Mechanics, Delft, 1924.
Reference: [26] K. R.  Rajagopal, A. S.  Wineman: On constitutive equations for branching of response with selectivity.Internat. J. Non-Linear Mech. 15 (1980), 83–91. MR 0580724, 10.1016/0020-7462(80)90002-5
Reference: [27] K. R.  Rajagopal, A. S. Wineman: A constitutive equation for nonlinear solids which undergo deformation induced micro-structural changes.International Journal of Plasticity 8 (1992), 385–395. 10.1016/0749-6419(92)90056-I
Reference: [28] K. R.  Rajagopal: Multiple configurations in Continuum Mechanics,.Report  6, Institute of Computational and Applied Mechanics, University of Pittsburgh, 1995.
Reference: [29] K. R.  Rajagopal, A. R.  Srinivasa: On the inelastic behavior of solids—Part  I: Twinning.International Journal of Plasticity 11 (1995), 653–678.
Reference: [30] K. R.  Rajagopal, A. R.  Srinivasa: On the inelastic behavior of solids—Part  II: Energetics associated with discontinuous deformation twinning.International Journal of Plasticity 13 (1997), 1–35. 10.1016/S0749-6419(96)00049-6
Reference: [31] K. R.  Rajagopal, A. S.  Wineman: A linearized theory for materials undergoing microstructural change.ARI 51 (1998), 160–168. 10.1007/s007770050049
Reference: [32] K. R.  Rajagopal, A. R. Srinivasa: Mechanics of the inelastic behavior of materials—Part  I: Theoretical underpinnings.International Journal of Plasticity 14 (1998), 945–967. 10.1016/S0749-6419(98)00037-0
Reference: [33] K. R.  Rajagopal, A. R.  Srinivasa: Mechanics of the inelastic behavior of materials—Part  II: Inelastic response.International Journal of Plasticity 14 (1998), 969–995. 10.1016/S0749-6419(98)00041-2
Reference: [34] K. R.  Rajagopal, A. R. Srinivasa: Thermomechanical modeling of shape memory alloys.ZAMP 50 (1999), 459–496. MR 1697717, 10.1007/s000330050028
Reference: [35] K. R.  Rajagopal, A. R.  Srinivasa: A thermodynamic framework for rate type fluid models.Journal of Non-Newtonian Fluid Mechanics 88 (2000), 207–227. 10.1016/S0377-0257(99)00023-3
Reference: [36] K. R.  Rajagopal, A. R. Srinivasa: Modeling anistropic fluids within the framework of bodies with multiple natural configurations.Journal of Non-Newtonian Fluid Mechanics (2001), .
Reference: [37] K. R.  Rajagopal, L. Tao: Modeling of the microwave drying process of aqueous dielectrics.ZAMP 53 (2002), 923–948. MR 1963544, 10.1007/PL00012620
Reference: [38] I. J.  Rao, K. R.  Rajagopal: A study of strain-induced crystallization of polymers.International Journal of Solids and Structures 38 (2001), 1149–1167. 10.1016/S0020-7683(00)00079-2
Reference: [39] I. J. Rao, J. D. Humphrey and K. R. Rajagopal: Growth and remodeling in a dynamically loaded axial tissue.Computational Method in Engineering Science, In press.
Reference: [40] I. J.  Rao, K. R.  Rajagopal: Phenomenological modeling of polymer crystallization using the notion of multiple natural configurations.Interfaces and free boundaries 2 (2000), 73–94. MR 1759500
Reference: [41] I. J.  Rao, K. R. Rajagopal: A thermomechanical framework for crystallization of polymers.Z.  Angew. Math. Phys. 53 (2002), 365–406. MR 1910337, 10.1007/s00033-002-8161-8
Reference: [42] E.  Reuss: Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie.Z. Angew. Math. Mech. 10 (1939), 266–274. 10.1002/zamm.19300100308
Reference: [43] A. J. C. B.  Saint-Venant: Note à joindre au Mémoire sur la dynamique des fluides.C.  R.  Acad. Sci. 17 (1843), 1240–1243.
Reference: [44] A. J. M.  Spencer: Continuum Physics, Vol.  3.A. C. Eringen (ed.), Academic Press, New York, 1975. MR 0468444
Reference: [45] A. R.  Srinivasa, K. R.  Rajagopal and R.  Armstrong: A phenomenological model of twinning based on dual reference structures.Acta. Metall. (1998), 1–14.
Reference: [46] G. G.  Stokes: On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids.Transactions of the Cambridge Philosophical Society 8 (1845), 287–305.
Reference: [47] H. E.  Tresca: On the ‘flow of solids’ with the practical application in some forgings.In: Proceedings of the Institution of Mechanical Engineers, London, 1867, pp. 114–150.
Reference: [48] C.  Truesdell: A First Course in Rational Continuum Mechanics.Academic Press, Boston-San Diego, 1991. Zbl 0866.73001, MR 1162744
Reference: [49] C. A.  Truesdell: Hypo-elasticity.J.  Rational Mechanics and Analysis 4 (1955), 323–425. Zbl 0064.42002, MR 0068412
Reference: [50] C.  Truesdell, W.  Noll: The Non-Linear Field Theories of Mechanics. Handbuch der Physik, $III_3$.Springer-Verlag, Berlin-Heidelberg-New York, 1965. MR 0193816
Reference: [51] R. von Mises: Mechanik der festen Körpern im plastisch-deformablen Zustand. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen.Mathematisch-Physikalische Klasse (1913), 582–592.
Reference: [52] A. S.  Wineman, K. R.  Rajagopal: On a constitutive theory for materials undergoing microstructural changes.Archives of Mechanics 42 (1990), 53–74. MR 1108245
Reference: [53] H.  Ziegler: Some extremum principles in irreversible thermodynamics.In: Progress in Solid Mechanics, I. Sneddon, R.  Hill (eds.), North-Holland Publishing Company, Amsterdam, 1963. MR 0163470
.

Files

Files Size Format View
AplMat_48-2003-4_3.pdf 515.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo