Previous |  Up |  Next

Article

Title: Reliable solution of parabolic obstacle problems with respect to uncertain data (English)
Author: Lovíšek, Ján
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 5
Year: 2003
Pages: 321-351
Summary lang: English
.
Category: math
.
Summary: A class of parabolic initial-boundary value problems is considered, where admissible coefficients are given in certain intervals. We are looking for maximal values of the solution with respect to the set of admissible coefficients. We give the abstract general scheme, proposing how to solve such problems with uncertain data. We formulate a general maximization problem and prove its solvability, provided all fundamental assumptions are fulfilled. We apply the theory to certain Fourier obstacle type maximization problem. (English)
Keyword: uncertain data
Keyword: optimal design approach
Keyword: parabolic obstacle problems
Keyword: penalization method
Keyword: Fourier problem
MSC: 35B30
MSC: 35K85
MSC: 49J40
idZBL: Zbl 1099.35054
idMR: MR2008888
DOI: 10.1023/B:APOM.0000024480.06960.ea
.
Date available: 2009-09-22T18:14:14Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134534
.
Reference: [1] J. P.  Aubin: Un théorème de compacité.C. R. Acad. Sci. Paris 256 (1963), 5042–5044. Zbl 0195.13002, MR 0152860
Reference: [2] V.  Barbu: Optimal Control of Variational Inequalities.Pitman, Boston, 1984. Zbl 0574.49005, MR 0742624
Reference: [3] I.  Bock, J.  Lovíšek: Optimal control of a viscoelastic plate bending.Math. Nachr. 125 (1968), 135–151. MR 0847355, 10.1002/mana.19861250109
Reference: [4] H.  Brézis: Problèmes unilatéraux.J. Math. Pures Appl. 51 (1972), 1–168.
Reference: [5] H.  Brézis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North Holland, Amsterdam, 1973. MR 0348562
Reference: [6] H. Brézis: Analyse fonctionelle.Masson, Paris, 1982.
Reference: [7] H.  Gajewski, K.  Gröger and K.  Zacharias: Nichtlineare Operatorgleichungen und Operator-Differentialgleichungen.Akademie, Berlin, 1974. MR 0636412
Reference: [8] I.  Hlaváček: Reliable solutions of elliptic boundary value problems with respect to uncertain data.Nonlinear Anal. 30 (1997), 3879–3980. MR 1602891, 10.1016/S0362-546X(96)00236-2
Reference: [9] I.  Hlaváček: Reliable solutions of linear parabolic problems with respect to uncertain coefficients.Z.  Angew. Math. Mech. 79 (1999), 291–301. MR 1695286, 10.1002/(SICI)1521-4001(199905)79:5<291::AID-ZAMM291>3.0.CO;2-N
Reference: [10] J. L.  Lions: Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles.Dunod, Paris, 1968. MR 0244606
Reference: [11] J.  L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [12] V. C.  Litvinov: Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics.Birkhäuser-Verlag, Berlin, 2000. Zbl 0947.49001, MR 1774123
Reference: [13] F.  Mignot, J.-P.  Puel: Optimal control of some variational inequalities.SIAM J.  Control Optim. 22 (1984), 466–478. MR 0739836, 10.1137/0322028
Reference: [14] U.  Mosco: Convergence of convex sets and solutions of variational inequalities.Adv. Math. 3 (1969), 510–585. MR 0298508, 10.1016/0001-8708(69)90009-7
Reference: [15] J.  Nečas: Les méthodes directes en théorie des équations elliptiques.Masson, Paris, 1967. MR 0227584
Reference: [16] P.  Neittaanmäki, D.  Tiba: Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms and Applications. Pure and Applied Mathematics.Marcel Dekker inc., New York, 1994. MR 1275836
Reference: [17] T. I.  Seidman, Hong Xing Zhou: Existence and uniqueness of optimal controls for a quasilinear parabolic equation.SIAM J. Control Optim. 20 (1982), 747–762. MR 0675567, 10.1137/0320054
Reference: [18] J.  Sokolowski, J.  P.  Zolesio: Introduction to Shape Optimization. Shape Sensitivity Analysis.Springer-Verlag, New York, 1992. MR 1215733
Reference: [19] J. P.  Yvon: Contrôle optimal de systèmes gouvernés par des inéquations variationnelles.Rapport de Recherche 22, INRIA, Paris, 1974.
Reference: [20] J. Steinbach: A Variational Inequality Approach to Free Boundary Problems with Applications in Mould Filling.Birkhäuser-Verlag, Basel, 2002. Zbl 1011.35001, MR 1891393
Reference: [21] G. M.  Troianiello: Elliptic Differential Equations and Obstacle Problems.Plenum Press, New York, 1987. Zbl 0655.35002, MR 1094820
Reference: [22] E. Zeidler: Nonlinear Functional Analysis and its Applications II/A, Linear Monotone Operators.Springer-Verlag, New York, 1990. Zbl 0684.47028, MR 1033497
.

Files

Files Size Format View
AplMat_48-2003-5_1.pdf 455.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo