Previous |  Up |  Next

Article

Title: Convergence of Rothe's method in Hölder spaces (English)
Author: Kikuchi, N.
Author: Kačur, J.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 5
Year: 2003
Pages: 353-365
Summary lang: English
.
Category: math
.
Summary: The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions. (English)
Keyword: Rothe’s method
Keyword: method of lines
Keyword: convergence of Rothe’s method
MSC: 35B50
MSC: 35K20
MSC: 46E35
MSC: 65M12
MSC: 65M20
MSC: 65M40
idZBL: Zbl 1099.65079
idMR: MR2008889
DOI: 10.1023/B:APOM.0000024481.01947.da
.
Date available: 2009-09-22T18:14:20Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134535
.
Reference: [1] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin-Heidelberg-Tokyo, 1983. MR 0737190
Reference: [2] M. Dreher, V. Pluschke: Local solutions of weakly parabolic semilinear differential equations.Math. Nachr. 200 (1999), 5–20. MR 1682789, 10.1002/mana.19992000102
Reference: [3] Ch. Grossman, M. Krätzschmar, H.-G. Roos: Gleichmäßig einschließende Diskretisierungsverfahren für schwach nichtlineare Randwertaufgaben.Numer. Math. 49 (1986), 95–110. MR 0847020, 10.1007/BF01389432
Reference: [4] J. Kačur: On $L_{\infty }$-convergence of Rothe’s method.Comment. Math. Univ. Carolin. 30 (1989), 505–510. MR 1031868
Reference: [5] J. Kačur: Application of Rothe’s method to evolution integro-differential equations.J.  Reine Angew. Math. 388 (1988), 73–105. MR 0944184
Reference: [6] N. Kikuchi: Hölder estimates of solutions to difference-differential equations of elliptic-parabolic type.J. Geom. Anal. 10 (2000), 525–538.
Reference: [7] N. Kikuchi: On a method of constructing Morse flows to variational functionals.Nonlinear World 1 (1994), 131–147. MR 1297075
Reference: [8] G. Koeffe, H.-G. Roos, L. Tobiska: An enclosure generating modification of the method of discretization in time.Comment. Math. Univ. Carolin. 28 (1982), 441–447. MR 0912574
Reference: [9] V. Pluschke: $L_{\infty }$-estimates and uniform convergence of Rothe’s method for quasilinear parabolic differential equations.Methoden Verfahren Math. Phys. Vol 37, K. Kleinman et al. (eds.), Peter Lang-Verlag, 1991, pp. 187–199. MR 1215747
Reference: [10] V. Pluschke: Local solutions to quasilinear parabolic equations without growth restrictions.Z. Anal. Anwendungen 15 (1996), 375–396. Zbl 0851.35051, MR 1394434, 10.4171/ZAA/706
Reference: [11] A. Kufner, O. John, S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [12] J.  Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [13] K. Rektorys: The Method of Discretization in Time and Partial Differential Equations.Reidel Publishing Company, Dordrecht-Boston-London, 1982. Zbl 0522.65059, MR 0689712
.

Files

Files Size Format View
AplMat_48-2003-5_2.pdf 352.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo