Title:
|
Diffuse-interface treatment of the anisotropic mean-curvature flow (English) |
Author:
|
Beneš, Michal |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
48 |
Issue:
|
6 |
Year:
|
2003 |
Pages:
|
437-453 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the motion by mean curvature in relative geometry by means of the modified Allen-Cahn equation, where the anisotropy is incorporated. We obtain the existence result for the solution as well as a result concerning the asymptotical behaviour with respect to the thickness parameter. By means of a numerical scheme, we can approximate the original law, as shown in several computational examples. (English) |
Keyword:
|
mean-curvature flow |
Keyword:
|
phase-field method |
Keyword:
|
FDM |
Keyword:
|
Finsler geometry |
MSC:
|
35A40 |
MSC:
|
53C44 |
MSC:
|
80A22 |
MSC:
|
82C26 |
idZBL:
|
Zbl 1099.53044 |
idMR:
|
MR2025297 |
DOI:
|
10.1023/B:APOM.0000024485.24886.b9 |
. |
Date available:
|
2009-09-22T18:15:05Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134542 |
. |
Reference:
|
[1] G. Bellettini, M. Novaga, and M. Paolini: Characterization of facet-breaking for nonsmooth mean curvature flow in the convex case.Interfaces and Free Boundaries 3 (2001), 415–446. MR 1869587 |
Reference:
|
[2] G. Bellettini, M. Paolini: Anisotropic motion by mean curvature in the context of Finsler geometry.Hokkaido Math. J. 25 (1996), 537–566. MR 1416006, 10.14492/hokmj/1351516749 |
Reference:
|
[3] M. Beneš: Anisotropic phase-field model with focused latent-heat release.In: Free Boundary Problems: Theory and Applications II, GAKUTO International Series Mathematical Sciences and Applications, Vol. 14, Chiba, Japan, 2000, pp. 18–30. MR 1793055 |
Reference:
|
[4] M. Beneš: Mathematical analysis of phase-field equations with numerically efficient coupling terms.Interfaces and Free Boundaries 3 (2001), 201–221. Zbl 0986.35116, MR 1825658 |
Reference:
|
[5] M. Beneš: Mathematical and computational aspects of solidification of pure substances.Acta Math. Univ. Comenian. 70 (2001), 123–152. Zbl 0990.80006, MR 1865364 |
Reference:
|
[6] M. Beneš, K. Mikula: Simulation of anisotropic motion by mean curvature-comparison of phase-field and sharp-interface approaches.Acta Math. Univ. Comenian. 67 (1998), 17–42. MR 1660813 |
Reference:
|
[7] L. Bronsard, R. Kohn: Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics.J. Differential Equations 90 (1991), 211–237. MR 1101239, 10.1016/0022-0396(91)90147-2 |
Reference:
|
[8] G. Caginalp: An analysis of a phase field model of a free boundary.Arch. Rational Mech. Anal. 92 (1986), 205–245. Zbl 0608.35080, MR 0816623, 10.1007/BF00254827 |
Reference:
|
[9] C. M. Elliott, M. Paolini, and R. Schtzle: Interface estimates for the fully anisotropic Allen-Cahn equation and anisotropic mean curvature flow.Math. Models Methods Appl. Sci. 6 (1996), 1103–1118. MR 1428147 |
Reference:
|
[10] L. C. Evans, J. Spruck: Motion of level sets by mean curvature I.J. Differential Geom. 33 (1991), 635–681. MR 1100206, 10.4310/jdg/1214446559 |
Reference:
|
[11] Y. Giga, M. Paolini, and P. Rybka: On the motion by singular interfacial energy.Japan J. Indust. Appl. Math. 18 (2001), 47–64. MR 1842909 |
Reference:
|
[12] M. Gurtin: On the two-phase Stefan problem with interfacial energy and entropy.Arch. Rational Mech. Anal. 96 (1986), 200–240. Zbl 0654.73008, MR 0855304 |
Reference:
|
[13] M. Gurtin: Thermomechanics of Evolving Phase Boundaries in the Plane.Clarendon Press, Oxford, 1993. Zbl 0787.73004, MR 1402243 |
Reference:
|
[14] D. A. Kessler, J. Koplik, and H. Levine: Geometrical models of interface evolution. III. Theory of dendritic growth.Phys. Rev. A 31 (1985), 1712–1717. |
Reference:
|
[15] J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod Gauthier-Villars, Paris, 1969. Zbl 0189.40603, MR 0259693 |
Reference:
|
[16] T. Ohta, M. Mimura, and R. Kobayashi: Higher-dimensional localized patterns in excitable media.Physica D 34 (1989), 115–144. MR 0982383, 10.1016/0167-2789(89)90230-3 |
Reference:
|
[17] J. A. Sethian: Level Set Methods.Cambridge University Press, New York, 1996. Zbl 0868.65059, MR 1409367 |
Reference:
|
[18] R. Temam: Navier-Stokes Equations, Theory and Numerical Analysis.North-Holland, Amsterdam, 1979. Zbl 0426.35003, MR 0603444 |
Reference:
|
[19] A. Visintin: Models of Phase Transitions.Birkhäuser, Boston, 1996. Zbl 0882.35004, MR 1423808 |
. |